summaryrefslogtreecommitdiffstats
path: root/hawkes_experiments/cause.py
diff options
context:
space:
mode:
Diffstat (limited to 'hawkes_experiments/cause.py')
-rw-r--r--hawkes_experiments/cause.py24
1 files changed, 13 insertions, 11 deletions
diff --git a/hawkes_experiments/cause.py b/hawkes_experiments/cause.py
index 800f699..711e34a 100644
--- a/hawkes_experiments/cause.py
+++ b/hawkes_experiments/cause.py
@@ -30,12 +30,13 @@ def cause(lamb, alpha, mu):
fatal_droots += 1
continue
background_rate = lamb * (1 + 0.43 * sin(0.0172 * t1 + 4.36))
- parents = sorted([(n2, t2, alpha / d * mu * exp(-mu * (t1 - t2)), d)
+ parents = sorted([(n2, t2, alpha / d ** 2 * mu * exp(-mu * (t1 - t2)), d)
for (n2, t2, d) in s], reverse=True,
key=lambda x: x[2])
parent_rate = sum(e[2] for e in parents)
- # if sum(e[2] for e in prl[:1]) > br:
- # G.add_edge((n1, t1), tuple(prl[0][:2]))
+ # if parents[0][2] > background_rate:
+ # G.add_edge(tuple(parents[0][:2]), (n1, t1),
+ # weight=parents[0][3])
if background_rate > parent_rate:
roots += 1
if (n1, t1) in fatals:
@@ -56,9 +57,9 @@ def analyze_graph(G):
print "cascades: {0}, min: {1}, max: {2}, mean: {3}, median: {4}".format(
len(csizes), np.min(csizes), np.max(csizes), np.mean(csizes),
np.median(csizes))
- # counts = Counter(l)
- # w = writer(open("components_dist.csv", "w"))
- # w.writerows(counts.most_common())
+ counts = Counter(csizes)
+ w = writer(open("components_dist.csv", "w"))
+ w.writerows(counts.most_common())
edges = list(G.edges_iter(data=True))
print "edges: {0}".format(len(edges))
times = [e[1][1] - e[0][1] for e in edges]
@@ -68,14 +69,15 @@ def analyze_graph(G):
print "distances, min: {0}, max: {1}, mean: {2}, median: {3}".format(
np.min(distances), np.max(distances), np.mean(distances),
np.median(distances))
- # e = writer(open("edges.csv", "w"))
- # e.writerows(edges)
+ e = writer(open("edges.csv", "w"))
+ e.writerows((e[0][0], e[0][1], e[1][0], e[1][1], e[2]["weight"])
+ for e in edges)
if __name__ == "__main__":
- nodes, edges, events, event_edges = load(open("data-dist1.pickle", "rb"))
- lamb, alpha, mu = 1.86602117779e-05, 0.0433473674726, 0.00109325510695
- # lamb, alpha, mu = 1.87717287808e-05, 5.12006113875e+14, 4.20918377797e-20
+ nodes, edges, events, event_edges = load(open("data-all.pickle", "rb"))
+ lamb, alpha, mu = 1.18909761267e-05, 0.00781529533133, 0.00373882477787
+ print "mu: {0}, alpha: {1}, beta: {2}".format(lamb, alpha, mu)
(droots, roots, infections, fatal_droots,
fatal_roots, fatal_infections, G) = cause(lamb, alpha, mu)
r = "events: {0}, droots: {1}, roots: {2}, infections: {3}, "\