diff options
Diffstat (limited to 'ic_experiments/ml.pyx')
| -rw-r--r-- | ic_experiments/ml.pyx | 109 |
1 files changed, 109 insertions, 0 deletions
diff --git a/ic_experiments/ml.pyx b/ic_experiments/ml.pyx new file mode 100644 index 0000000..e1bf26b --- /dev/null +++ b/ic_experiments/ml.pyx @@ -0,0 +1,109 @@ +# cython: boundscheck=False, cdivision=True +import numpy as np +cimport numpy as np +from libc.math cimport log, exp + +DTYPE = np.float64 +ctypedef np.float_t DTYPE_t + +cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda, + DTYPE_t t_scale, DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): + """weight for successful infection, exponential time model""" + cdef DTYPE_t structural, temporal, result + # structural = delta ** (dist**1) + structural = delta * lmbda**(dist-1) + temporal = log(exp(alpha/t_scale)-1.) - alpha*dt/t_scale + # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01 + result = log(structural) + temporal + return result + +cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda, + DTYPE_t t_scale, DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): + """weight for failed infection, exponential time model""" + cdef DTYPE_t structural, temporal, result + # structural = delta ** (dist**1) + structural = delta * lmbda**(dist-1) + temporal = exp(-alpha * dt/t_scale) + # temporal = 1. - 1. / (1. + dt/alpha)**0.01 + result = log(1. - structural + structural * temporal) + return result + +def ml(dict root_victims, dict victims, dict non_victims, + DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda): + cdef: + int n_roots, n_victims, roots, i, dist, dt, t, l, n_days + DTYPE_t beta, ll, beta_add, max_beta, max_beta_add + list parents, failures, successes + n_roots, n_victims = len(root_victims), len(victims) + n_nodes = 148152 + n_days = 3012 + t_scale = 1. + cdef: + np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) + np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) + np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE) + np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE) + np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) + + # loop through victims + for i, parents in enumerate(victims.itervalues()): + # for each victim node i, compute the probability that all its parents + # fail to infect it, also computes the probability that its most + # likely parent infects it + failures = [weight_failure(dist, dt, alpha, delta, lmbda, t_scale, w1, w2, w3) + for (prnt, dist, dt, w1, w2, w3) in parents] + probs_fail[i] = sum(failures) + successes = [weight_success(dist, dt, alpha, delta, lmbda, t_scale, w1, w2, w3) + for (prnt, dist, dt, w1, w2, w3) in parents] + dists = [dist for (prnt, dist, dt, w1, w2, w3) in parents] + dts = [dt for (prnt, dist, dt, w1, w2, w3) in parents] + # find parent that maximizes log(p) - log(\tilde{p}) + probs[i] = float("-inf") + for l, s in enumerate(successes): + prob = s - failures[l] + if prob > probs[i]: + probs[i] = prob + parent_dists[i] = dists[l] + parent_dts[i] = dts[l] + # probs_fail[i] = failures[l] + + # loop through non-victims + for i, parents in enumerate(non_victims.itervalues()): + # for each non victim node, compute the probability that all its + # parents fail to infect it + failures = [weight_failure(dist, dt, alpha, delta, lmbda, t_scale, w1, w2, w3) + for (prnt, dist, dt, w1, w2, w3) in parents] + probs_nv[i] = sum(failures) + + # calculate log likelihood + ll = probs_fail.sum() # add probability that all edges to all victims fail + ll += probs_nv.sum() # add probability that all edges to non_victims fail + + max_beta_add = float('-inf') + # iterate over all victim nodes to find the optimal threshold + for beta in np.arange(0.01, 1., 0.01): + thresh = log(beta/(n_days*(1.-beta))) + seeds = probs<thresh + non_seeds = probs>=thresh + roots = n_roots + sum(seeds) + + beta_add = 0. + # add probability for realized edges and subtract probability these edges fail + beta_add += (probs[non_seeds]).sum() + # add probability for the seeds and non-seeds + beta_add += roots * log(beta/n_days) + (n_nodes-roots) * log(1. - beta) + + if beta_add > max_beta_add: + max_beta = beta + max_roots = roots + max_beta_add = beta_add + pdists = (parent_dists[non_seeds]).mean() + pdts = (parent_dts[non_seeds]).mean() + # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots + + ll += max_beta_add + roots = max_roots + beta = max_beta + print 'dist:', pdists + print 'dt:', pdts + return (beta, roots, ll) |
