summaryrefslogtreecommitdiffstats
path: root/R Scripts/generate-hyper-lcc.R
blob: 786b6940306f24d37876065530363e5ef5da2fe6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
library(igraph)
setwd("~/Documents/Cascade Project/")
load('Raw Data/lcc.RData')

lcc_verts = get.data.frame(lcc,'vertices')
lcc_edges = get.data.frame(lcc,'edges')


##### Create new vertices dataframe
cols = c('id','ir_no','sex','race','dob','age.arrest','arrest.day',
         'gang.member','gang.name','faction.name')
hyp_lcc_verts = data.frame(matrix(ncol=length(cols)+1,nrow=0))
colnames(hyp_lcc_verts) = c(cols,'spawn.date')
  
ptm = proc.time()
ri = 1
for (i in 1:dim(lcc_verts)[1]){
  if (i%%10000==0) print(i)
  if (lcc_verts$vic[i]){
    if (lcc_verts$vic.nonfatal[i]>0){
      # create nodes for each nonfatal shooting
      for (nf in 1:lcc_verts$vic.nonfatal[i]){
        hyp_lcc_verts[ri,cols] = lcc_verts[i,cols]
        hyp_lcc_verts$id[ri] = ri
        hyp_lcc_verts$vic[ri] = T
        hyp_lcc_verts$vic.type[ri] = 'nonfatal'
        if(nf==1){
          hyp_lcc_verts$vic.day[ri] = lcc_verts$nonfatal_day_1[i]
          hyp_lcc_verts$spawn.date[ri] = 0
        } else if(nf==2){
          hyp_lcc_verts$vic.day[ri] = lcc_verts$nonfatal_day_2[i]
          hyp_lcc_verts$spawn.date[ri] = lcc_verts$nonfatal_day_1[i]
        } else if(nf==3){
          hyp_lcc_verts$vic.day[ri] = lcc_verts$nonfatal_day_3[i]
          hyp_lcc_verts$spawn.date[ri] = lcc_verts$nonfatal_day_2[i]
        } else if(nf==4){
          hyp_lcc_verts$vic.day[ri] = lcc_verts$nonfatal_day_4[i]
          hyp_lcc_verts$spawn.date[ri] = lcc_verts$nonfatal_day_3[i]
        } else if(nf==5){
          hyp_lcc_verts$vic.day[ri] = lcc_verts$nonfatal_day_5[i]
          hyp_lcc_verts$spawn.date[ri] = lcc_verts$nonfatal_day_4[i]
        }
        ri = ri+1
      }
      # if no fatal infection, create uninfected duplicate
      if (!lcc_verts$vic.fatal[i]){
        hyp_lcc_verts[ri,cols] = lcc_verts[i,cols]
        hyp_lcc_verts$id[ri] = ri
        hyp_lcc_verts$vic[ri] = F
        hyp_lcc_verts$vic.type[ri] = NA
        hyp_lcc_verts$vic.day[ri] = NA
        hyp_lcc_verts$spawn.date[ri] = max(lcc_verts$nonfatal_day_1[i],lcc_verts$nonfatal_day_2[i],
                                           lcc_verts$nonfatal_day_3[i],lcc_verts$nonfatal_day_4[i],
                                           lcc_verts$nonfatal_day_5[i],na.rm=T)
        ri = ri+1
      }
    }
    # create a node for each fatal shooting
    # if also nonfatal shootings, spawn at last nonfatal shooting
    if (lcc_verts$vic.fatal[i]){
      hyp_lcc_verts[ri,cols] = lcc_verts[i,cols]
      hyp_lcc_verts$id[ri] = ri
      hyp_lcc_verts$vic[ri] = T
      hyp_lcc_verts$vic.type[ri] = 'fatal'
      hyp_lcc_verts$vic.day[ri] = lcc_verts$fatal_day[i] 
      if (lcc_verts$vic.nonfatal[i]>0){
        hyp_lcc_verts$spawn.date[ri] = max(lcc_verts$nonfatal_day_1[i],lcc_verts$nonfatal_day_2[i],
                                           lcc_verts$nonfatal_day_3[i],lcc_verts$nonfatal_day_4[i],
                                           lcc_verts$nonfatal_day_5[i],na.rm=T)
      } else {
        hyp_lcc_verts$spawn.date[ri] = 0
      }
      ri = ri+1
    }
  } 
  # create an uninfected node for each uninfected person
  else{
    hyp_lcc_verts[ri,cols] = lcc_verts[i,cols]
    hyp_lcc_verts$id[ri] = ri
    hyp_lcc_verts$vic[ri] = F
    hyp_lcc_verts$vic.type[ri] = NA
    hyp_lcc_verts$vic.day[ri] = NA
    hyp_lcc_verts$spawn.date[ri] = 0
    ri = ri+1
  }
}
print(proc.time()-ptm) # 1.5 hrs
row.names(hyp_lcc_verts) = NULL
n.nodes = sum(sum(V(lcc)$vic.fatal),sum(V(lcc)$vic.nonfatal),
              sum(V(lcc)$vic.nonfatal>0 & !V(lcc)$vic.fatal),sum(V(lcc)$vic==FALSE))
stopifnot(dim(hyp_lcc_verts)[1] == n.nodes)

##### Create new edgelist
print('Edges')
hyp_lcc_edges = data.frame(from=0, to=0, weight=0)
ei = 1
ptm = proc.time()
for(i in 1:dim(hyp_lcc_verts)[1]){
  if (i%%10000==0) print(i)
  ego_id = hyp_lcc_verts$id[i]
  ego_ir = hyp_lcc_verts$ir_no[i]
  alter_irs = union(lcc_edges$from[which(lcc_edges$to==ego_ir)],
                    lcc_edges$to[which(lcc_edges$from==ego_ir)])
#   alter_irs = union(ego_ir, alter_irs) # add edges to other infected selves
  alter_ids = hyp_lcc_verts$id[which(hyp_lcc_verts$ir_no %in% alter_irs)]
  alter_ids = alter_ids[ego_id<alter_ids] # avoid double-counting edges
  for(alter_id in alter_ids){
    weight=Inf
    alter_ir = hyp_lcc_verts$ir_no[alter_id]
    if(ego_ir!=alter_ir){
      edge_id = which((lcc_edges$from %in% c(ego_ir,alter_ir) + lcc_edges$to %in% c(ego_ir,alter_ir))==2)
      weight = lcc_edges$weight[edge_id]
    }
    hyp_lcc_edges[ei,] = c(ego_id, alter_id, weight)
    ei = ei + 1
  }
}
print(proc.time()-ptm) #10 hrs

##### Create new graph
hyp_lcc = graph.data.frame(hyp_lcc_edges, directed=FALSE, vertices=hyp_lcc_verts)

save(hyp_lcc_edges, hyp_lcc_verts, hyp_lcc, file='Results/hyper-lcc.RData')
write.csv(hyp_lcc_edges, file='Results/hyp_lcc_edges.csv')
write.csv(hyp_lcc_verts[,c('id','spawn.date','vic','vic.type','vic.day')], file='Results/hyp_lcc_verts.csv')