1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
# cython: boundscheck=False, cdivision=True
import numpy as np
cimport numpy as np
from libc.math cimport log, exp
DTYPE = np.float64
ctypedef np.float_t DTYPE_t
cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
"""weight for successful infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
structural = delta ** dist
temporal = log(exp(alpha)-1.) - alpha*dt
result = log(structural) + temporal
return result
cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
"""weight for failed infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
structural = delta ** dist
temporal = exp(-alpha * dt)
result = log(1. - structural + structural * temporal)
return result
def ml3(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
DTYPE_t alpha, DTYPE_t delta):
cdef:
int n_roots, n_victims, roots, i, dist, dt, t, l
DTYPE_t beta, ll, beta_add, max_beta, max_beta_add
list parents, failures, successes
n_roots, n_victims = len(root_victims), len(victims)
cdef:
np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] isSeed = np.ones(n_victims, dtype=DTYPE)
# loop through victims
for i, parents in enumerate(victims.itervalues()):
# for each victim node i, compute the probability that all its parents
# fail to infect it, also computes the probability that its most
# likely parent infects it
failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
for (dist, dt, w1, w2, w3) in parents]
probs_fail[i] = sum(failures)
successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3)
for (dist, dt, w1, w2, w3) in parents]
dists = [dist for (dist, dt, w1, w2, w3) in parents]
dts = [dt for (dist, dt, w1, w2, w3) in parents]
# find parent that maximizes log(p) - log(\tilde{p})
# probs[i] = max(s - failures[l] for l, s in enumerate(successes))
# probs[i] = 0.
for l, s in enumerate(successes):
prob = s - failures[l]
if prob > -19.523275053840013:
isSeed[i] = 0
probs[i] += prob
parent_dists[i] = dists[l]
parent_dts[i] = dts[l]
# probs_fail[i] = failures[l]
# calculate log likelihood
ll = probs_fail.sum() # add probability that all edges to all victims fail
# print 'probs', probs
max_beta_add = float('-inf')
# iterate over all victim nodes to find the optimal threshold
for beta in np.arange(0.00001, 1., 1.):
thresh = log(beta/(3012.*(1.-beta)))
seeds = isSeed==1
non_seeds = isSeed==0
roots = n_roots + sum(seeds)
beta_add = 0.
# add probability for realized edges and subtract probability these edges fail
beta_add += (probs[non_seeds]).sum()
# add probability for the seeds and non-seeds
beta_add += roots * log(beta/3012.) + sum(non_seeds) * log(1. - beta)
if beta_add > max_beta_add:
max_beta = beta
max_roots = roots
max_beta_add = beta_add
# print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots
ll += max_beta_add
roots = max_roots
beta = max_beta
# print n_nodes, n_roots, n_victims, max_i, roots
return (beta, roots, ll)
|