summaryrefslogtreecommitdiffstats
path: root/hawkes/main.py
blob: 40993a1b1f122602f300b3b6024afdb4cc97ea89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from cPickle import load
from math import log, exp, sqrt, sin
from random import random, gauss
import sys
from itertools import product
from multiprocessing import Pool

GR = (sqrt(5) - 1) / 2


def gss(f, a, b, tol=1e-20):
    """golden section search to minimize along one coordinate"""
    c = b - GR * (b - a)
    d = a + GR * (b - a)
    while abs(c - d) > tol:
        fc = f(c)
        fd = f(d)
        if fc < fd:
            b = d
            d = c
            c = b - GR * (b - a)
        else:
            a = c
            c = d
            d = a + GR * (b - a)
        sys.stderr.write("gss:" + " ".join(map(str, [a, b, fc, fd])) + "\n")
        sys.stderr.flush()
    return (b + a) / 2, fc


def iter_events(events):
    for n, s in events.iteritems():
        for t in s:
            yield (n, t)


def ll_old(lamb, alpha, mu):
    r1 = sum(log(lamb + sum(alpha * w * mu * exp(-mu * (t1 - t2))
                            for (n2, t2, w) in s))
             for ((n1, t1), s) in event_edges.iteritems())
    r2 = sum(sum(alpha * w * (1 - exp(-mu * (nodes[n2] - t1)))
                 for n2, w in edges[n1].iteritems() if nodes[n2] > t1)
             for (n1, t1) in iter_events(events))
    r3 = lamb * sum(nodes.itervalues())
    return -(r1 - r2 - r3)


def ll(lamb, alpha, mu):
    r1 = sum(log(lamb * (1 + 0.43 * sin(0.0172 * t1 + 4.36))
                 + sum(alpha / d * mu * exp(-mu * (t1 - t2))
                       for (n2, t2, d) in s))
             for ((n1, t1), s) in event_edges.iteritems())
    r2 = sum(sum(alpha / d * (1 - exp(-mu * (nodes[n2] - t1)))
                 for n2, d in edges[n1].iteritems() if nodes[n2] > t1)
             for (n1, t1) in iter_events(events))
    r3 = lamb * sum(nodes.itervalues())
    return -(r1 - r2 - r3)


def sa(x, y, z, sigma=0.5, niter=70, fc=None):
    T = 0.1
    e = 1.1
    if fc:
        fo = fc
    else:
        fo = ll(x, y, z)
    for _ in xrange(niter):
        sys.stderr.write("sa: " + " ".join(map(str, [T, sigma, x, y, z, fo]))
                         + "\n")
        sys.stderr.flush()
        yn = max(y + gauss(0, sigma * y + 1e-10), 0)
        zn = max(z + gauss(0, sigma * z + 1e-10), 0)
        fn = ll(x, yn, zn)
        if fn < fo or exp((fo - fn) / T) > random():
            y = yn
            z = zn
            sigma *= 2
            fo = fn
        else:
            sigma /= e
        if sigma < 1e-5:
            break
        T *= 0.99
    return y, z, fo


def optimize_with_sa(x, y, z, niter=200):

    def f(x):
        return ll(x, y, z)

    # y, z = sa(x, y, z)
    y, z, fc = sa(x, y, z)
    for _ in xrange(niter):
        x, fc = gss(f, 0, 1e-3, tol=1e-10)
        y, z, fc = sa(x, y, z, fc=fc)
        print x, y, z, fc
        sys.stdout.flush()


def optimize_with_gss(x, y, z, niter=100):

    def f(x):
        return ll(x, y, z)

    def g(y):
        return ll(x, y, z)

    def h(z):
        return ll(x, y, z)

    for _ in xrange(niter):
        y, fc = gss(g, 0, 100, tol=1e-10)
        z, fc = gss(h, 0, 100, tol=1e-10)
        x, fc = gss(f, 0, 1e-3, tol=1e-10)
        print x, y, z, fc
        sys.stdout.flush()


def coarse_search():
    d = {}
    for line in open("values.txt"):
        v = map(float, line.strip().split())
        d[tuple(v[:3])] = v[3]
    p = Pool(5)
    lamb = [20. ** i for i in range(-10, 0)]
    alpha = [20. ** i for i in range(-15, 15)]
    mu = [20. ** i for i in range(-15, 15)]

    def aux(x):
        if x in d:
            return
        l, a, m = x
        print l, a, m, ll(l, a, m)
        sys.stdout.flush()

    p.map(aux, product(lamb, alpha, mu))


if __name__ == "__main__":
    nodes, edges, events, event_edges = load(open("data2.pickle", "rb"))

    x = 1.2e-5
    y = 0.002
    z = 0.004
    # sa(x, y, z)

    with open(sys.argv[1]) as fh:
        l = [map(float, line.strip().split()[:3]) for line in fh]
    for e in l:
        optimize_with_sa(*e)

    # optimize_with_gss(x, y, z)
    # print ll(x, y, z)
    # coarse_search()