summaryrefslogtreecommitdiffstats
path: root/lecture/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'lecture/main.tex')
-rw-r--r--lecture/main.tex9
1 files changed, 0 insertions, 9 deletions
diff --git a/lecture/main.tex b/lecture/main.tex
index bef50ba..8b273ca 100644
--- a/lecture/main.tex
+++ b/lecture/main.tex
@@ -305,15 +305,6 @@ that this expected number is constant.
proof of the lemma.
\end{proof}
-\begin{proof}
- $\E(time to query(x)) \leq \E(number of full intervals containing x)\leq
- \sum_{k=1}^\infty\sum_{intervals I, |I|=k, h(x)\in I} \Pr(full)$
- $\sum_{k=1}^\infty k\max_I \Pr(I full)$
- we need to show that the $\max$ is $O(1/k^3)$ so that the sum converges.
- $(m=2n)$, $n=number of diff keys active$.
- $$\Pr(I full) \leq \Pr\big(|L(I)-\E L(I)|\geq \E L(I)\big)$$
-\end{proof}
-
\begin{proof}[Proof of Proposition~\ref{prop:unfinished}]
By applying the previous lemma:
\begin{align*}