summaryrefslogtreecommitdiffstats
path: root/ps5
diff options
context:
space:
mode:
Diffstat (limited to 'ps5')
-rw-r--r--ps5/main.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/ps5/main.tex b/ps5/main.tex
index 662ffa1..b04f24e 100644
--- a/ps5/main.tex
+++ b/ps5/main.tex
@@ -313,7 +313,7 @@ concludes the proof of the question.
\paragraph{(e)} Using Markov's inequality, let $X$ be the number of
monochromatic edges after applying the previous rounding scheme. We have:
\begin{displaymath}
- \Pr\left[X\geq \frac{n}{4}\left] \leq \frac{n/6}{n/4} = \frac{2}{3}
+ \Pr\left[X\geq \frac{n}{4}\right] \leq \frac{n/6}{n/4} = \frac{2}{3}
\end{displaymath}
Hence, by repeating the previous rounding scheme $O(\log n)$ times, we
know that at least once we will have less that $\frac{n}{4}$ monochromatic edges