1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb,amsthm}
\DeclareMathOperator*{\E}{\mathbb{E}}
\let\Pr\relax
\DeclareMathOperator*{\Pr}{\mathbb{P}}
\newcommand{\eps}{\varepsilon}
\newcommand{\inprod}[1]{\left\langle #1 \right\rangle}
\newcommand{\R}{\mathbb{R}}
\renewcommand{\H}{\mathcal{H}}
\newcommand{\handout}[5]{
\noindent
\begin{center}
\framebox{
\vbox{
\hbox to 5.78in { {\bf CS 224: Advanced Algorithms } \hfill #2 }
\vspace{4mm}
\hbox to 5.78in { {\Large \hfill #5 \hfill} }
\vspace{2mm}
\hbox to 5.78in { {\em #3 \hfill #4} }
}
}
\end{center}
\vspace*{4mm}
}
\newcommand{\lecture}[4]{\handout{#1}{#2}{#3}{Scribe: #4}{Lecture #1}}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{observation}[theorem]{Observation}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{fact}[theorem]{Fact}
\newtheorem{assumption}[theorem]{Assumption}
\theoremstyle{definition}
\newtheorem*{example}{Example}
\newtheorem{definition}[theorem]{Definition}
% 1-inch margins, from fullpage.sty by H.Partl, Version 2, Dec. 15, 1988.
\topmargin 0pt
\advance \topmargin by -\headheight
\advance \topmargin by -\headsep
\textheight 8.9in
\oddsidemargin 0pt
\evensidemargin \oddsidemargin
\marginparwidth 0.5in
\textwidth 6.5in
\parindent 0in
\parskip 1.5ex
\begin{document}
\lecture{Lecture 3 --- Tuesday Sep 09, 2014}{Fall 2014}{Prof.\ Jelani Nelson}{Thibaut Horel}
}
\section{Overview}
Today, hashing
\begin{itemize}
\item load balancing
\item k-wise independence
\item dictionary (perfect hashing, linear probing)
\item retrieval problem (cuckoo hashing, bloomier filters)
\item membership, bloom filters
\item simple tabulation
\end{itemize}
\section{Hashing}
In hashing, we have a family $\H$ of hashing functions mapping $[u]$ to $[m]$
(where $[u]$ denotes the set $\{0,\ldots, u-1\}$). For a set $S\subseteq [u]$
with $|S| = n$, we want that $h$ picked at random in $\H$ behaves ``nicely'' on
$S$.
\begin{example}[load balancing]
We have $n$ jobs that need to be assigned to $m$ machines and each job has a
job ID in $[u]$. We want to evenly spread the job over the machines. We pick
$h$ at random in a family of hashing functions $\H$. When a new job $j\in[u]$
comes in, we assign it to machine $h(j)\in[m]$. This is usually referred to as
the ``balls and bins'' random process.
\end{example}
We would like to say that $\Pr(\exists \text{ machine receiving more than
$\frac{m}{n}$ jobs})$ is small. First, let us assume that the random variables
$h(i)$ for $i\in [u]$ are independent. We will need the following concentration
inequality.
\begin{theorem}[Chernoff bound]
Let $X_1, \ldots, X_n$ be $n$ independent random variables with
$X_i\in\{0,1\}$. Let us write $X=\sum_{i=1}^n X_i$, then:
\begin{displaymath}
\Pr\big(X\geq (1+\delta)\E[X]\big)\leq
\left(\frac{e^\delta}{(1+\delta)^{1+\delta}}\right)^{\E[X]}.
\end{displaymath}
\end{theorem}
The Chernoff bound can be proved using Markov's inequality.
\begin{lemma}[Markov's inequality]
Let $X$ be a nonnegative, random variable, then:
\begin{displaymath}
\forall\lambda > 0,\; \Pr (X\geq\lambda)\leq \frac{\E[X]}{\lambda}.
\end{displaymath}
\end{lemma}
\begin{proof}[Proof (Chernoff bound)]
By Markov's inequality, we have:
\begin{displaymath}
\Pr (X \geq \lambda) = \Pr\big(e^{tX} \geq
e^{t\lambda}\big)\leq\frac{\E\big[e^{tX}\big]}{e^{t\lambda}}.
\end{displaymath}
By independence:
\begin{displaymath}
\E\big[e^{tX}\big] = \prod_{i=1}^n\E\big[e^{tX_i}\big]
=\prod_{i=1}^n\big(p_ie^t+(1-p_i)\big)
\leq\prod_{i=1}^ne^{p_i(e^t-1)} = e^{(e^t-1)\E[X]},
\end{displaymath}
where the inequality uses $1+x\leq e^x$. We then conclude the proof by
choosing $\lambda = (1+\delta)\E[X]$ and $t=\log(1+\delta)$.
\end{proof}
Using the Chernoff bound, we can prove the following proposition.
\begin{proposition}
For the balls and bins random process, with $m=n$, then:
\begin{displaymath}
\Pr\left(\exists \text{ machine with more than $\frac{c\log n}{\log\log
n}$ jobs}\right)
\leq \frac{1}{\mathrm{poly}(n)}.
\end{displaymath}
\end{proposition}
\begin{proof}
Focus on some machine $t$ and define:
\begin{displaymath}
X_i= \begin{cases}
1 &\text{if $h(i) = t$}\\
0&\text{otherwise}
\end{cases}
\end{displaymath}
Then, $X=\sum_{i=1}^n X_i$ is the number of jobs assigned to machine $t$
and $\E[X]=1$. Applying the Chernoff bound:
\begin{displaymath}
P\left(X\geq \frac{c\log n}{\log \log n}\right) \leq
\left(\frac{e}{c\log n/\log\log n}\right)^{\frac{c\log
n}{\log\log n}} = \left(\frac{e}{k}\right)^k\leq\frac{1}{n^c}
\end{displaymath}
where $k=\frac{c\log n}{\log \log n}$. The last inequality comes from the
fact that the solution to $k^k = n^c$ is $k=O(\log n/\log\log n)$. This
implies, by using a union bound:
\begin{displaymath}
\Pr(\exists\text{ overloaded machine})
\leq \sum_{t=1}^n \Pr (t\text{ is overloaded})
\leq \frac{1}{n^{c-1}}\qedhere
\end{displaymath}
\end{proof}
We propose an alternative proof which does not rely on the Chernoff bound.
\begin{proof}
Using union bounds:
\begin{align*}
\Pr(\exists\text{ overloaded machine})
&\leq n \Pr(\text{machine 1 is overloaded})\\
&=\Pr(\exists \text{ $k$ items mapping to machine 1})\\
&\leq \sum_{\substack{T\subseteq[u]\\|T|=k}} \Pr (\text{items in $T$ all
map to 1})\\
&\leq\sum_{\substack{T\subseteq[u]\\|T|=k}} \frac{1}{n^k}
= \frac{\binom{n}{k}}{n^k}\leq \frac{1}{k!}
\leq\left(\frac{1}{(k/2)}\right)^{k/2}
\end{align*}
and we conclude as in the previous proof.
\end{proof}
Note that the second proof does not require full independence, but only that
sets of $k$ elements are mapped to independent random variables. This motivates
the following definitions.
\begin{definition}
The random variables $X_1,\ldots,X_n$ are \emph{$k$-wise independent} iff
for any set of indices $1\leq i_1\leq\ldots\leq i_k\leq n$, the random
variables $X_{i_1},\ldots,X_{i_k}$ are independent.
\end{definition}
\begin{definition}
A set of hash functions $\H$ is a \emph{$k$-wise independent family} iff
the random variables $h(0), h(1),\ldots,h(u-1)$ are $k$-wise independent
and uniformly distributed in $[m]$ when $h\in\H$ is drawn uniformly at
random.
\end{definition}
\begin{example}
The set $\H$ of all functions from $[u]$ to $[m]$ is $k$-wise independent
for all $k$.
\end{example}
\begin{example}[$u=m=p$, $p$ prime] We define
$\H = \big\{h: h(x) = \sum_{i=0}^{k-1} a_ix^i\bmod p\big\}$ where
$a_i\in\{0,\ldots,p-1\}$. By using polynomial interpolation, we know that
for any \mbox{$(x_1,\ldots, x_k, y_1,\ldots,y_k)\in[p]^{2k}$} there exists
a unique polynomial $h\in\H$ such that $h(x_1) = y_1,\ldots, h(x_k) = y_k$.
Since there are $p^k$ elements in $\H$, if $h\in\H$ is drawn uniformly at
random, $\Pr(h(x_1) = y_1,\ldots,h(x_k) = y_k) = 1/p^k$, which shows that
$\H$ is $k$-wise independent.
\end{example}
\begin{example}[$u=p$, $p$ prime\footnote{In practice, we do not lose by
requiring $u$ to be prime. Indeed, by Bertrand's postulate, there always
exists a prime between $u$ and $2u$.}]
We define $\H = \big\{h: h(x) = \big(\sum_{i=0}^{k-1}a_i x^i \bmod p\big)
\bmod m\big\}$. We see that $\Pr(h(x_1) = y_1,\ldots, h(x_k) = y_k)\leq
\left(\frac{2}{m}\right)^k$.
\end{example}
\section{Dictionary problem}
This is a data structural problem with two operations:
\begin{itemize}
\item \texttt{update(k,v)}: associates key $k$ with value $v$.
\item \texttt{query(k)}: returns value $v$ associated with key $k$ or
\texttt{null} if $k$ is not in the dictionary.
\end{itemize}
The keys and the values are assumed to live the in same universe $[u]$.
\subsection{Chaining with linked lists}
The dynamic dictionary problem can be solved by hash tables with chaining. In
this solution the hash table is an array $A$ of size $m$. Each element in the
array is a pointer to a linked list containing (key, value) pairs.
We pick $h\in\H$ from a $2$-wise independent family. The operations on key $k$
are made in the linked list pointed to by $A\big[h(k)\big]$.
The running time of an operation on key $k$ is linear in the length of the
linked list at $h(k)$. It is possible to show that $\E_h[\text{length of list
at $h(k)$}]= O(1)$ if $m\geq n$.
\subsection{Perfect hashing}
\subsection{Linear probing}
In real architectures, sequential memory accesses are much faster. A solution
to the dictionary problem with better spacial locality is \emph{linear
probing}. Array $A$ store $k$ at $h(k)$. If the spot is already taken, keep
walking to the right until you find and empty spot and store the key there.
Linear probing dates back at least to 1954 where it was used in an assembly
program written by Samuel, Amdahl and Boehme. It was first analyzed in a note
published by Knuth \cite{Knuth63} in the case where $h$ is totally random ($\H$
is the set of all functions). There was a breakthrough in
This was suggested by (Samuel, Amdahl, Boehme, in '54) and first analyzed by
Knuth in '63 assuming that $h$ is totally random ($\H$ is the set of all the
functions). ($m=(1+\eps)n$, $\E(time per op) = O(1/\eps^2)$.
(Pagh, Pagh, Ruzic '09): breakthrough. for any $\H$ $5$-wise independent implies $\E
time = O(1)$ ($m\geq cn$).
Patrascu, Thorup (ICALP '10) showed that $4$-wise doesn't guarantee $O(1)$.
\begin{claim}
If $m\geq cn$ and $\H$ is $7$-wise independent, then $\E(\text{query time})
= O(1)$.
\end{claim}
\begin{proof}
How many spots to you have to touch before finding an empty spot. We are going
to show that the expected length of a run is a constant.
\end{proof}
\begin{definition}
Given an interval $I$ of cells in $A$, $L(I) = |\{i: h(i)\in
I\}|$\footnote{we allow intervals to wrap around at the end of the table}.
\end{definition}
\begin{definition}
$I$ is full is $|L(I)| \geq |I|$.
\end{definition}
\begin{lemma}
If \texttt{query(x)} for some $x$ makes $k$ probes, then $h(x)$ is in some
full interval of length at least $k$.
\end{lemma}
\begin{proof}
$\E(time to query(x)) \leq \E(number of full intervals containing x)\leq
\sum_{k=1}^\infty\sum_{intervals I, |I|=k, h(x)\in I} \Pr(full)$
$\sum_{k=1}^\infty k\max_I \Pr(I full)$
we need to show that the $\max$ is $O(1/k^3)$ so that the sum converges.
$(m=2n)$, $n=number of diff keys active$.
$$\Pr(I full) \leq \Pr\big(|L(I)-\E L(I)|\geq \E L(I)\big)$$
we would like to use Chernoff, but we don't have independence.
we can raise both sides to the power $6$.
\end{proof}
\bibliographystyle{alpha}
\bibliography{main}
\end{document}
|