summaryrefslogtreecommitdiffstats
path: root/ps2
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2015-02-27 13:37:30 -0500
committerThibaut Horel <thibaut.horel@gmail.com>2015-02-27 13:37:30 -0500
commit53c67b30ae39def4699f6b2f64fc33a67d4f5f2e (patch)
treeedb00d5d7a621fb8f357eca0920607baff862dd8 /ps2
parent579d1b59775e777e1a3f81000a6620c34519bf70 (diff)
downloadcs225-53c67b30ae39def4699f6b2f64fc33a67d4f5f2e.tar.gz
[ps2] fix a few typos
Diffstat (limited to 'ps2')
-rw-r--r--ps2/main.tex6
1 files changed, 3 insertions, 3 deletions
diff --git a/ps2/main.tex b/ps2/main.tex
index e59a055..ecfba0b 100644
--- a/ps2/main.tex
+++ b/ps2/main.tex
@@ -111,7 +111,7 @@ Dividing by $x_{i^*}$ both sides (it is non-zero for the same reason as in
where we again used the triangle inequality, the definition of $x_{i^*}$ and
the fact that the sum of the entries of the rows of $M$ is one. Hence, the
chain of inequalities is a chain of equalities. This implies that for all $j$
-such that $m_{i,j} \neq 0$, $x_j=x_{i^*}$. But we can then repeatedly apply the
+such that $m_{i^*,j} \neq 0$, $x_j=x_{i^*}$. But we can then repeatedly apply the
same argument to all the neighbors of $i^*$, the neighbors of their neighbors,
etc. By induction (over the distance to $i^*$), we see that for all vertices
$j$ in the same connected component as $i^*$, $x_j = x_{i^*}>0$. This implies
@@ -186,7 +186,7 @@ index this path $i^* = i_1,\ldots, i_l = k$. Then:
\sum_{(i,j)\in E} (x_i-x_j)^2 \geq \sum_{s=1}^l (x_{i_{s+1}}
- x_{i_s})^2
\end{displaymath}
-where we restricted the sum on the path from $i^*$ to $k$. Applying the
+where we restricted the sum to the path from $i^*$ to $k$. Applying the
Cauchy-Schwartz inequality:
\begin{displaymath}
\sum_{(i,j)\in E} (x_i-x_j)^2 \geq \frac{1}{l} \left(\sum_{s=1}^l x_{i_{s+1}}
@@ -197,7 +197,7 @@ Finally using $x_{i^*}^2 \geq \frac{1}{n}$ and $l\leq n$:
\begin{displaymath}
\sum_{(i,j)\in E} (x_i-x_j)^2 \geq \frac{1}{n^2}
\end{displaymath}
-Taking the $\min$ over $x$, this implies using, the variational expression for
+Taking the $\min$ over $x$, this implies, using the variational expression for
$\lambda_2$ (second largest eigenvalue) established at the beginning of the
question: $\lambda_2\leq 1-\frac{1}{dn^2}$.