summaryrefslogtreecommitdiffstats
path: root/ps3/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'ps3/main.tex')
-rw-r--r--ps3/main.tex213
1 files changed, 213 insertions, 0 deletions
diff --git a/ps3/main.tex b/ps3/main.tex
new file mode 100644
index 0000000..2cb4a1f
--- /dev/null
+++ b/ps3/main.tex
@@ -0,0 +1,213 @@
+\documentclass[10pt]{article}
+\usepackage{fullpage}
+\usepackage[utf8x]{inputenc}
+\usepackage{amsmath,amsfonts,amsthm}
+\usepackage[english]{babel}
+\usepackage[capitalize, noabbrev]{cleveref}
+\usepackage{algorithm}
+\usepackage{algpseudocode}
+
+\newenvironment{enumerate*}%
+ {\vspace{-2ex} \begin{enumerate} %
+ \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}%
+ {\end{enumerate}}
+
+\newenvironment{itemize*}%
+ {\vspace{-2ex} \begin{itemize} %
+ \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}%
+ {\end{itemize}}
+
+\newenvironment{description*}%
+ {\vspace{-2ex} \begin{description} %
+ \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}%
+ {\end{description}}
+
+\DeclareMathOperator{\E}{\mathbb{E}}
+\let\P\relax
+\DeclareMathOperator{\P}{\mathbb{P}}
+\DeclareMathOperator*{\argmin}{\arg\min}
+\newcommand{\ex}[1]{\E\left[#1\right]}
+\newcommand{\prob}[1]{\P\left[#1\right]}
+\newcommand{\inprod}[1]{\left\langle #1 \right\rangle}
+\newcommand{\R}{\mathbf{R}}
+\newcommand{\poly}{\text{poly}}
+\newcommand{\N}{\mathbf{N}}
+\newcommand{\C}{\mathcal{C}}
+\newcommand{\eps}{\varepsilon}
+\newcommand{\cl}[1]{\text{\textbf{#1}}}
+\newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}}
+\newcommand{\llbracket}{[\![}
+
+\newtheorem{theorem}{Theorem}
+\newtheorem{lemma}{Lemma}
+\algrenewcommand\algorithmicensure{\textbf{Output:}}
+\algrenewcommand\algorithmicrequire{\textbf{Input:}}
+
+\author{Thibaut Horel}
+\title{CS 225 Problem Set 3 -- Solutions}
+
+\begin{document}
+\maketitle
+
+\section*{Problem 4.2}
+
+\paragraph{1.} Let $S$ be an independent set of $G$. I apply the first
+inequality of Lemma 4.15 to the sets $S$ and $S$ and obtain:
+\begin{displaymath}
+ \left(\frac{|S|}{N}\right)^2
+ \leq \lambda \frac{|S|}{N}\left(1-\frac{|S|}{N}\right)
+\end{displaymath}
+since $e(S, S) = 0$ by definition of an independent set. Reordering the terms:
+\begin{displaymath}
+ |S|\leq \lambda (N-|S|)
+\end{displaymath}
+or equivalently $|S| \leq \lambda N/(1+\lambda)$. Taking the maximum over all
+independent sets yields the required bound on $\alpha(G)$.
+
+\paragraph{2.}Let us consider a coloring of $G$ with $\chi(G)$ colors. One
+color must contain at least $N/\chi(G)$ vertices. This set of $N/\chi(G)$
+vertices form an independent set of $G$ by definition of a coloring. Applying
+the result from \textbf{1.}:
+\begin{displaymath}
+ \frac{N}{\chi(G)}\leq \frac{\lambda N}{1+\lambda}
+\end{displaymath}
+which immediately yields $\chi(G)\geq (1+\lambda)/\lambda$ as required.
+
+\paragraph{3.} Let $D$ be the diameter of $G$ and let us consider two vertices
+$i$ and $j$ distant from $D$ in $G$. Let us now consider a random walk on $G$
+starting from $i$ and denote by $p_j^t$ the probability of being at vertex
+$j$ after $t$ steps. Denoting by $M$ the random walk matrix of $G$ and by
+$\pi_i$ the indicator vector of $\{i\}$, we have:
+\begin{displaymath}
+ p_j^t = (\pi_i M^t)_j
+\end{displaymath}
+by Lemma 2.51:
+\begin{displaymath}
+ \left|p_j^t-\frac{1}{n}\right| = \left|(\pi_i M^t)_j-\frac{1}{n}\right|
+ \leq \|\pi_iM^t - u\|\leq \lambda^t
+\end{displaymath}
+For $t= \lceil D/2\rceil$, we have $p_j^t = 0$ (we cannot reach $j$ in less
+than $D$ steps). This implies:
+\begin{displaymath}
+ \lambda^{\lceil D/2\rceil}\geq \frac{1}{n}
+\end{displaymath}
+solving for $D$:
+\begin{displaymath}
+ D\leq 2\log_{1/\lambda} N = O(\log_{1/\lambda}N)
+\end{displaymath}
+
+\section*{Problem 4.5}
+
+For a given $\eps$ and $\delta$, we construct the following items:
+\begin{enumerate}
+ \item an expander $G$ of constant expansion $1-\lambda$ on $N$ vertices,
+ with $\lambda = \frac{1}{8}$. By Theorem 4.22, we have the guarantee
+ that for any function $g:[N]\to[0,1]$, for a random walk
+ $x_1,\dots,x_t$ in $G$ starting from a uniformly random $x_1\in [N]$:
+ \begin{displaymath}
+ \P\left[\frac{1}{t}\sum_t g(x_t) \geq \mu(g) + \lambda
+ + \frac{1}{4}\right]\leq e^{-\Omega(t)}
+ \end{displaymath}
+ \item a pairwise independent sampler $\text{Samp}$ which given $x\in[N]$
+ outputs $\ell$ samples in $\{0,1\}^m$. The guarantee we have by
+ Proposition 3.28 is that:
+ \begin{displaymath}
+ \P_{x\gets U_{[N]}}\left[\left|\frac{1}{\ell}\sum_{j=1}^{\ell}
+ f\big(\text{Samp}(x)_j\big)- \mu(f)\right|\geq \eps\right]\leq
+ \frac{1}{\ell\eps^2}
+ \end{displaymath}
+ Such a sampler can be obtained by having $\text{Samp}(x)$ be a function
+ drawn from a pairwise independent family using the coin tosses in $x$.
+ We will have the above guarantee as long as $x$ provides enough random
+ bits. This will be the case with, for example $\log N = 2(\log \ell
+ + m)$.
+\end{enumerate}
+
+For a vertex $x\in G$, we denote by $\mu_x(f)$ the quantity
+$\frac{1}{\ell}\sum_{j=1}^{\ell} f\big(\text{Samp}(x)_j\big)$. That is, the
+estimate of $\mu(f)$ computed using the samples provided by $\text{Samp}(x)$.
+We denote by $g(x)$ the indicator function of the event
+$\left\{|\mu_x(f)-\mu(f)|\geq\eps\right\}$. Another way of reformulating the
+guarantee on $\text{Samp}$ is to say that the average of $g$
+satisfies $\mu(g)\leq \frac{1}{\ell\eps^2}$.
+
+We construct our $(\delta,\eps)$ sampler as follows:
+\begin{enumerate}
+ \item we pick $\ell = \frac{8}{\eps^2}$ and $\log N = 2(\log\ell + m)$.
+ \item we construct a random walk $x_1,\dots,x_t$ on $G$ starting from
+ a uniformly random $x_1\in [N]$
+ \item we output the median $M$ of $\big\{\mu_{x_1}(f),\dots,\mu_{x_t}(f)\big\}$.
+\end{enumerate}
+
+Let us now consider the quantity $\P[|M-\mu(f)|\geq \eps]$. If the median is
+more than $\eps$ away from $\mu(f)$, this implies that more than half of the
+numbers $\mu_{x_1}(f),\dots,\mu_{x_t}(f)$ are $\eps$ away from $\mu(f)$. That
+is, more than half of the variables $g(x_1),\dots,g(x_t)$ are equal to $1$:
+\begin{displaymath}
+ \frac{1}{t}\sum_t g(x_t) \geq \frac{1}{2}
+\end{displaymath}
+But because of our choice of $\ell$, we have $\mu(g)\leq \frac{1}{8}$. Since
+$\lambda = \frac{1}{8}$, we have $\mu(g)+\lambda + \frac{1}{4} \leq
+\frac{1}{2}$. The Chernoff bound for our expander then implies that this event
+(the mean of the $g(x_i)$ being larger than $1/2$) is less than
+$e^{-\Omega(t)}$. To summarize:
+\begin{displaymath}
+\P[|M-\mu(f)|\geq \eps]
+\leq
+\P\left[\frac{1}{t}\sum_t g(x_t) \geq \frac{1}{2}\left]\leq
+\P\left[\frac{1}{t}\sum_t g(x_t) \geq \mu(g)+\lambda+\frac{1}{4}\left]\leq e^{-\Omega(t)}
+\end{displaymath}
+Hence, choosing $t = O(\log\frac{1}{\delta})$ gives the correct success
+probability for our estimator $M$. Furthermore:
+\begin{itemize}
+ \item the number of random bits needed is $\log N = 2(\log\ell + m)
+ = O(\log\frac{1}{\eps} + m)$ for the initial vertex $x_1$ and
+ $O(\log\frac{1}{\delta})$ for the $t-1$ remaining steps. This is
+ $O(\log\frac{1}{\eps} + m +\log\frac{1}{\delta})$ overall.
+ \item the number of queries to $f$ is $t\cdot
+ l = O(\frac{1}{\eps^2}\log\frac{1}{\delta})$.
+\end{itemize}
+which satisfies all the requirements.
+
+\section*{Problem 4.10}
+
+\paragraph{1.} We use a simple counting argument. A set $S$ of at most $K$
+vertices is incident to exactly $D|S|$ edges. We can count these edges by
+summing over all vertices in $N(S)$, the number of parents they have in $S$. If
+$U$ is the set of unique neighbors (they have a single parent) and if we
+denote by $p_S(u)$ the number of parents of $u$ in $S$, we have:
+\begin{displaymath}
+ D|S| = \sum_{u\in N(S)} p_S(u) = |U| + \sum_{u\in N(S)\setminus U} p_S(u)
+\end{displaymath}
+using that $p_S(u)\geq 2$ for $u\in N(S)\setminus U$ and $|N(S)|\geq
+(1-\eps)D|S|$ by expansion:
+\begin{displaymath}
+ D|S| \geq |U| + 2\big((1-\eps)D|S|-|U|\big)
+\end{displaymath}
+solving for $|U|$ gives $|U|\geq (1-2\eps)D|S|$ as required.
+
+\paragraph{2.} We prove this by contradiction. Assume the result is false, then
+there is a set $S$ of size $\leq K/2$ and $T$ disjoint from $S$ of size
+$|S|/2$ such that the vertices in $T$ have $\delta D$ neighbors in $N(S)$. Then
+the set $S\cup T$ has size $3|S|/2\leq 3/4K$ and thus has expansion
+$(1-\eps)D$:
+\begin{displaymath}
+ |N(S\cup T)| \geq (1-\eps)\frac{3}{2}D|S|
+\end{displaymath}
+on the other hand, we can upper bound $|N(S\cup T)|$:
+\begin{displaymath}
+ |N(S\cup T)|\leq |N(S)| + |N(T)|\leq D|S| + (1-\delta)D|T|
+ = D\frac{3}{2}|S|-\frac{\delta}{2} D |S|
+\end{displaymath}
+combining the above two inequalities, we obtain:
+\begin{displaymath}
+ \delta D|S|\leq 3\eps D|S|
+\end{displaymath}
+which is a contradiction, for example when $\delta = 4\eps$.
+
+\paragraph{3.} The algorithm to test membership is very simple: for query $x\in
+N$, pick a random neighbor of $x$ in $G$ and output the bit assigned to this
+neighbor (“1” means $x\in S$, “0” means $x\notin S$). The property $\Pi$ immediately
+implies that the error probability is at most $\delta$.
+
+\end{document}