summaryrefslogtreecommitdiffstats
path: root/ps3/main.tex
blob: 2cb4a1f3626cf40dfe0667d2e40fc872aca617e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
\documentclass[10pt]{article}
\usepackage{fullpage}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath,amsfonts,amsthm}
\usepackage[english]{babel}
\usepackage[capitalize, noabbrev]{cleveref}
\usepackage{algorithm}
\usepackage{algpseudocode}

\newenvironment{enumerate*}%
  {\vspace{-2ex} \begin{enumerate} %
     \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}%
  {\end{enumerate}}
 
\newenvironment{itemize*}%
  {\vspace{-2ex} \begin{itemize} %
     \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}%
  {\end{itemize}}
 
\newenvironment{description*}%
  {\vspace{-2ex} \begin{description} %
     \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}%
  {\end{description}}

\DeclareMathOperator{\E}{\mathbb{E}}
\let\P\relax
\DeclareMathOperator{\P}{\mathbb{P}}
\DeclareMathOperator*{\argmin}{\arg\min}
\newcommand{\ex}[1]{\E\left[#1\right]}
\newcommand{\prob}[1]{\P\left[#1\right]}
\newcommand{\inprod}[1]{\left\langle #1 \right\rangle}
\newcommand{\R}{\mathbf{R}}
\newcommand{\poly}{\text{poly}}
\newcommand{\N}{\mathbf{N}}
\newcommand{\C}{\mathcal{C}}
\newcommand{\eps}{\varepsilon}
\newcommand{\cl}[1]{\text{\textbf{#1}}}
\newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}}
\newcommand{\llbracket}{[\![}

\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\algrenewcommand\algorithmicensure{\textbf{Output:}}
\algrenewcommand\algorithmicrequire{\textbf{Input:}}

\author{Thibaut Horel}
\title{CS 225 Problem Set 3 -- Solutions}

\begin{document}
\maketitle

\section*{Problem 4.2}

\paragraph{1.} Let $S$ be an independent set of $G$. I apply the first
inequality of Lemma 4.15 to the sets $S$ and $S$ and obtain:
\begin{displaymath}
    \left(\frac{|S|}{N}\right)^2
    \leq \lambda \frac{|S|}{N}\left(1-\frac{|S|}{N}\right)
\end{displaymath}
since $e(S, S) = 0$ by definition of an independent set. Reordering the terms:
\begin{displaymath}
    |S|\leq \lambda (N-|S|)
\end{displaymath}
or equivalently $|S| \leq \lambda N/(1+\lambda)$. Taking the maximum over all
independent sets yields the required bound on $\alpha(G)$.

\paragraph{2.}Let us consider a coloring of $G$ with $\chi(G)$ colors. One
color must contain at least $N/\chi(G)$ vertices. This set of $N/\chi(G)$
vertices form an independent set of $G$ by definition of a coloring. Applying
the result from \textbf{1.}:
\begin{displaymath}
    \frac{N}{\chi(G)}\leq \frac{\lambda N}{1+\lambda}
\end{displaymath}
which immediately yields $\chi(G)\geq (1+\lambda)/\lambda$ as required.

\paragraph{3.} Let $D$ be the diameter of $G$ and let us consider two vertices
$i$ and $j$ distant from $D$ in $G$. Let us now consider a random walk on $G$
starting from $i$ and denote by $p_j^t$ the probability of being at vertex
$j$ after $t$ steps. Denoting by $M$ the random walk matrix of $G$ and by
$\pi_i$ the indicator vector of $\{i\}$, we have:
\begin{displaymath}
    p_j^t = (\pi_i M^t)_j
\end{displaymath}
by Lemma 2.51:
\begin{displaymath}
    \left|p_j^t-\frac{1}{n}\right| = \left|(\pi_i M^t)_j-\frac{1}{n}\right|
    \leq \|\pi_iM^t - u\|\leq \lambda^t
\end{displaymath}
For $t= \lceil D/2\rceil$, we have $p_j^t = 0$ (we cannot reach $j$ in less
than $D$ steps). This implies:
\begin{displaymath}
    \lambda^{\lceil D/2\rceil}\geq \frac{1}{n}
\end{displaymath}
solving for $D$:
\begin{displaymath}
    D\leq 2\log_{1/\lambda} N = O(\log_{1/\lambda}N)
\end{displaymath}

\section*{Problem 4.5}

For a given $\eps$ and $\delta$, we construct the following items:
\begin{enumerate}
    \item an expander $G$ of constant expansion $1-\lambda$ on $N$ vertices,
        with $\lambda = \frac{1}{8}$. By Theorem 4.22, we have the guarantee
        that for any function $g:[N]\to[0,1]$, for a random walk
        $x_1,\dots,x_t$ in $G$ starting from a uniformly random $x_1\in [N]$:
        \begin{displaymath}
            \P\left[\frac{1}{t}\sum_t g(x_t) \geq \mu(g) + \lambda
            + \frac{1}{4}\right]\leq e^{-\Omega(t)}
        \end{displaymath}
    \item a pairwise independent sampler $\text{Samp}$ which given $x\in[N]$
        outputs $\ell$ samples in $\{0,1\}^m$. The guarantee we have by
        Proposition 3.28 is that:
        \begin{displaymath}
            \P_{x\gets U_{[N]}}\left[\left|\frac{1}{\ell}\sum_{j=1}^{\ell}
            f\big(\text{Samp}(x)_j\big)- \mu(f)\right|\geq \eps\right]\leq
            \frac{1}{\ell\eps^2}
        \end{displaymath}
        Such a sampler can be obtained by having $\text{Samp}(x)$ be a function
        drawn from a pairwise independent family using the coin tosses in $x$.
        We will have the above guarantee as long as $x$ provides enough random
        bits.  This will be the case with, for example $\log N = 2(\log \ell
        + m)$.
\end{enumerate}

For a vertex $x\in G$, we denote by $\mu_x(f)$ the quantity
$\frac{1}{\ell}\sum_{j=1}^{\ell} f\big(\text{Samp}(x)_j\big)$. That is, the
estimate of $\mu(f)$ computed using the samples provided by $\text{Samp}(x)$.
We denote by $g(x)$ the indicator function of the event
$\left\{|\mu_x(f)-\mu(f)|\geq\eps\right\}$. Another way of reformulating the
guarantee on $\text{Samp}$ is to say that the average of $g$
satisfies $\mu(g)\leq \frac{1}{\ell\eps^2}$.

We construct our $(\delta,\eps)$ sampler as follows:
\begin{enumerate}
    \item we pick $\ell = \frac{8}{\eps^2}$ and $\log N = 2(\log\ell + m)$.
    \item we construct a random walk $x_1,\dots,x_t$ on $G$ starting from
        a uniformly random $x_1\in [N]$
    \item we output the median $M$ of $\big\{\mu_{x_1}(f),\dots,\mu_{x_t}(f)\big\}$.
\end{enumerate}

Let us now consider the quantity $\P[|M-\mu(f)|\geq \eps]$. If the median is
more than $\eps$ away from $\mu(f)$, this implies that more than half of the
numbers $\mu_{x_1}(f),\dots,\mu_{x_t}(f)$ are $\eps$ away from $\mu(f)$. That
is, more than half of the variables $g(x_1),\dots,g(x_t)$ are equal to $1$:
\begin{displaymath}
    \frac{1}{t}\sum_t g(x_t) \geq \frac{1}{2}
\end{displaymath}
But because of our choice of $\ell$, we have $\mu(g)\leq \frac{1}{8}$. Since
$\lambda = \frac{1}{8}$, we have $\mu(g)+\lambda + \frac{1}{4} \leq
\frac{1}{2}$. The Chernoff bound for our expander then implies that this event
(the mean of the $g(x_i)$ being larger than $1/2$) is less than
$e^{-\Omega(t)}$. To summarize:
\begin{displaymath}
\P[|M-\mu(f)|\geq \eps]
\leq 
\P\left[\frac{1}{t}\sum_t g(x_t) \geq \frac{1}{2}\left]\leq
\P\left[\frac{1}{t}\sum_t g(x_t) \geq \mu(g)+\lambda+\frac{1}{4}\left]\leq e^{-\Omega(t)}
\end{displaymath}
Hence, choosing $t = O(\log\frac{1}{\delta})$ gives the correct success
probability for our estimator $M$. Furthermore:
\begin{itemize}
    \item the number of random bits needed is $\log N = 2(\log\ell + m)
        = O(\log\frac{1}{\eps} + m)$ for the initial vertex $x_1$ and
        $O(\log\frac{1}{\delta})$ for the $t-1$ remaining steps. This is
        $O(\log\frac{1}{\eps} + m +\log\frac{1}{\delta})$ overall.
    \item the number of queries to $f$ is $t\cdot
        l = O(\frac{1}{\eps^2}\log\frac{1}{\delta})$.
\end{itemize}
which satisfies all the requirements.

\section*{Problem 4.10}

\paragraph{1.} We use a simple counting argument. A set $S$ of at most $K$
vertices is incident to exactly $D|S|$ edges. We can count these edges by
summing over all vertices in $N(S)$, the number of parents they have in $S$. If
$U$ is the set of unique neighbors (they have a single parent) and if we
denote by $p_S(u)$ the number of parents of $u$ in $S$, we have:
\begin{displaymath}
    D|S| = \sum_{u\in N(S)} p_S(u) = |U| + \sum_{u\in N(S)\setminus U} p_S(u) 
\end{displaymath}
using that $p_S(u)\geq 2$ for $u\in N(S)\setminus U$ and $|N(S)|\geq
(1-\eps)D|S|$ by expansion:
\begin{displaymath}
    D|S| \geq |U| + 2\big((1-\eps)D|S|-|U|\big)
\end{displaymath}
solving for $|U|$ gives $|U|\geq (1-2\eps)D|S|$ as required.

\paragraph{2.} We prove this by contradiction. Assume the result is false, then
there is a set $S$ of size $\leq K/2$ and $T$ disjoint from $S$ of size
$|S|/2$ such that the vertices in $T$ have $\delta D$ neighbors in $N(S)$. Then
the set $S\cup T$ has size $3|S|/2\leq 3/4K$ and thus has expansion
$(1-\eps)D$:
\begin{displaymath}
    |N(S\cup T)| \geq (1-\eps)\frac{3}{2}D|S|
\end{displaymath}
on the other hand, we can upper bound $|N(S\cup T)|$:
\begin{displaymath}
    |N(S\cup T)|\leq |N(S)| + |N(T)|\leq D|S| + (1-\delta)D|T|
    = D\frac{3}{2}|S|-\frac{\delta}{2} D |S|
\end{displaymath}
combining the above two inequalities, we obtain:
\begin{displaymath}
    \delta D|S|\leq  3\eps D|S|
\end{displaymath}
which is a contradiction, for example when $\delta = 4\eps$.

\paragraph{3.} The algorithm to test membership is very simple: for query $x\in
N$, pick a random neighbor of $x$ in $G$ and output the bit assigned to this
neighbor (“1” means $x\in S$, “0” means $x\notin S$). The property $\Pi$ immediately
implies that the error probability is at most $\delta$.

\end{document}