1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
import numpy as np
import scipy.linalg
from scipy.optimize import minimize
from math import sqrt, pi
import time
import matplotlib.pyplot as plt
import seaborn
seaborn.set_style("white")
data = np.loadtxt('CASP.csv', delimiter=',', skiprows=1)
y = data[:, 0]
X = data[:, 1:]
def split_train_test(X, y, fraction_train=9.0 / 10.0):
end_train = round(X.shape[0] * fraction_train)
X_train = X[0:end_train, ]
y_train = y[0:end_train]
X_test = X[end_train:, ]
y_test = y[end_train:]
return X_train, y_train, X_test, y_test
def normalize_features(X_train, X_test):
mean_X_train = np.mean(X_train, 0)
std_X_train = np.std(X_train, 0)
std_X_train[std_X_train == 0] = 1
X_train_normalized = (X_train - mean_X_train) / std_X_train
X_test_normalized = (X_test - mean_X_train) / std_X_train
return X_train_normalized, X_test_normalized
X_train, y_train, X_test, y_test = split_train_test(X, y)
X_train, X_test = normalize_features(X_train, X_test)
X_train = np.concatenate((X_train, np.ones((X_train.shape[0], 1))), 1)
X_test = np.concatenate((X_test, np.ones((X_test.shape[0], 1))), 1)
def map_estimate(X, y, sigma=1.0, tau=10.):
lamb = sqrt(tau) * np.identity(X.shape[1])
X_tilde = np.concatenate((X/sqrt(sigma), lamb))
Y_tilde = np.concatenate((y/sqrt(sigma), np.zeros(X.shape[1])))
q, r = np.linalg.qr(X_tilde)
return scipy.linalg.solve_triangular(r, np.dot(q.T, Y_tilde),
check_finite=False)
def train_qr(X, y):
return map_estimate(X, y)
def log_posterior(w, X, y, sigma=1.0, tau=10):
return (1 / (2 * sigma) * np.linalg.norm(y - np.dot(X, w)) ** 2
+ 1 / (2 * tau) * np.linalg.norm(w) ** 2)
def gradient(w, X, y, sigma=1.0, tau=10):
return (- 1 / sigma * np.dot(X.T, y - np.dot(X, w)) + 1 / tau * w)
def verify_gradient(eps=1e-10):
w = np.ones(X_train.shape[1])
for i in range(X_train.shape[1]):
epsilon = np.zeros(X_train.shape[1])
epsilon[i] = eps
print (log_posterior(w + epsilon, X_train, y_train)
- log_posterior(w - epsilon, X_train, y_train)) / (2 * eps)
print gradient(w, X_train, y_train)[i]
def rmse(X, y, w):
predictions = np.dot(X, w)
return np.linalg.norm(predictions - y) / sqrt(len(y))
def train_lbfgs(X, y):
x0 = np.zeros(X.shape[1])
def f(w):
return log_posterior(w, X, y)
def g(w):
return gradient(w, X, y)
return minimize(f, x0, jac=g, method='L-BFGS-B',
options={'maxiter': 100}).x
def map_features(X, d):
A = np.random.normal(0, 1, size=(d, X.shape[1]))
b = np.random.uniform(0, 2 * pi, d)
return np.cos(np.dot(A, X.T).T + b)
if __name__ == "__main__":
# problem 4
wqr = train_qr(X_train, y_train)
print wqr
print rmse(X_test, y_test, wqr)
# problem 5
wlbfgs = train_lbfgs(X_train, y_train)
print wlbfgs
print rmse(X_test, y_test, wlbfgs)
# problem 6
lqr = []
llbfgs = []
for d in [100, 200, 400, 600]:
X = map_features(X_train, d)
X_t = map_features(X_test, d)
t_start = time.time()
wqr = train_qr(X, y_train)
rqr = time.time() - t_start
t_start = time.time()
wlbfgs = train_lbfgs(X, y_train)
rlbfgs = time.time() - t_start
lqr.append((rqr, rmse(X_t, y_test, wqr)))
llbfgs.append((rlbfgs, rmse(X_t, y_test, wlbfgs)))
plt.figure(figsize=(8, 8))
x, y = zip(*lqr)
plt.plot(x, y, "-ro", label="QR")
x, y = zip(*llbfgs)
plt.plot(x, y, "-bo", label="L-BFGS")
plt.xlabel("Time (s)")
plt.ylabel("RMSE")
plt.legend()
plt.savefig("plot.pdf", bbox_inches="tight")
|