summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2014-09-26 00:20:52 -0400
committerThibaut Horel <thibaut.horel@gmail.com>2014-09-26 00:22:21 -0400
commit411a67dc526eaf5580dd231c3d3b3dc60d080b63 (patch)
tree06ac267cb6fefc555f722f223967288a76ad4cb6
parent5138ac04d7359453c1344b997214031dd0e9d24f (diff)
downloadecon2099-411a67dc526eaf5580dd231c3d3b3dc60d080b63.tar.gz
Latex error
-rw-r--r--ps1/main.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/ps1/main.tex b/ps1/main.tex
index 5ee2ece..35ad24b 100644
--- a/ps1/main.tex
+++ b/ps1/main.tex
@@ -166,7 +166,7 @@ is a Bayes-Nash equilibrium yet because it is not onto. However, we can show
that bids which are not attained by $s$ are dominated. Since $s$ is
non-decreasing, its maximum value is:
\begin{displaymath}
-s^* = \frac{w_1-w_2}{w_1}\int_{\R^+} zf(z)dz}
+s^* = \frac{w_1-w_2}{w_1}\int_{\R^+} zf(z)dz
\end{displaymath}
Let us show that bids above $s^*$ are dominated by $s^*$. The utility of an
agent with value $v$ when bidding $s^*$ is $u = w_1\big(v-s^*\big)$ since he
@@ -351,7 +351,7 @@ By the central limit theorem, $X_n$ converges in distribution:
\end{displaymath}
Note that:
\begin{displaymath}
- \E\left[I_nX_n] = \E\left[h(X_n)\right]
+ \E[I_nX_n] = \E\left[h(X_n)\right]
\end{displaymath}
where $h(x) = \mathbf{1}_{x\geq 0}$ is the indicator function of $x$ being
non-negative. Using convergence in distribution: