summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2014-09-24 01:14:23 -0400
committerThibaut Horel <thibaut.horel@gmail.com>2014-09-24 01:14:23 -0400
commit52d821568a337e4bfa226fe127e2e592c42b3457 (patch)
tree67d172facf2f954e323b1c16d35ee461c1d3b716
parent20a34e518d8769e656e14fe7c9db8393fe2e959c (diff)
downloadecon2099-52d821568a337e4bfa226fe127e2e592c42b3457.tar.gz
Just realized there was a bug in Problem 1
-rw-r--r--ps1/main.tex14
1 files changed, 7 insertions, 7 deletions
diff --git a/ps1/main.tex b/ps1/main.tex
index 5fd6d6a..0605359 100644
--- a/ps1/main.tex
+++ b/ps1/main.tex
@@ -72,18 +72,18 @@ For agent 1,$$\Pr[v_1 \geq v_2] = \begin{cases} \int_{\frac{1}{2}}^{v_1} 2\,dx =
For agent 1, $P_1^{SP}(v_1)$ equals $\E[v_2|v_1\geq v_2]\cdot \Pr[v_1 \geq v_2]$. By Revenue Equivalence (Corollary 2.5), for $i \in \{1,2\}$, $P_i^{SP}(v_i) = P_i^{FP}(v_i)$.
-We directly compute $$\E[v_2|v_1\geq v_2] = \begin{cases} \int_{\frac{1}{2}}^{v_1} 2x\,dx = v_1^2 - \frac{1}{4} &\text{ if } v_1 > \frac{1}{2} \\ 0 &\text{ if } v_1 \leq \frac{1}{2} \end{cases}$$
-
-Thus,
-$$s_1(v_1) = v_1^2-\frac{1}{4} \text{ if } v_1 > \frac{1}{2}.$$
+We directly compute $$\E[v_2|v_1\geq v_2] = \begin{cases} \frac{1}{2}\big(v_1+\frac{1}{2}\big) &\text{ if } v_1 > \frac{1}{2} \\ 0 &\text{ if } v_1 \leq \frac{1}{2} \end{cases}$$
+Indeed, in expectation a uniform random variable evenly divides the interval it is over, and conditioned on $v_1\geq v_2$, $v_2$ is $U\big[\frac{1}{2},1\big]$. Thus,
+$$s_1(v_1) = \begin{cases} \frac{1}{2}\big(v_1+\frac{1}{2}\big) &\text{ if } v_1 > \frac{1}{2} \\ 0 &\text{ if } v_1 \leq \frac{1}{2} \end{cases}.$$
For agent 2, $$\Pr[v_2 \geq v_1] = \int_{0}^{v_2}\,dx = v_2$$
-Computing $$\E[v_1|v_2\geq v_1] = \int_0^{v_2} x\,dx = \frac{v_2^2}{2}$$
+Computing $$\E[v_1|v_2\geq v_1] = \int_0^{v_2} x\,dx = \frac{v_2}{2}$$
+since conditioned on $v_2\geq v_1$, $v_1$ is $U\big[0,v_2\big]$.
-So $$s_2(v_2) = \frac{v_2^2}{2}.$$
+So $$s_2(v_2) = \frac{v_2}{2}.$$
-We will show a counterexample to the requirement that the item it always allocated to the agent with the highest value. Specifically, we will exhibit a scenario where $v_1 < v_2$ but $s_1(v_1) > s_2(v_2)$ and so agent 1 will be allocated the item despite having a lower valuation. Let $v_1 = \frac{7}{8}$ and let $v_2 = 1$. Then, $$s_1(v_1) = \frac{49}{64} - \frac{16}{64} = \frac{33}{64}$$ but $$s_2(v_2) = \frac{1}{2.}$$ Therefore, no Bayes-Nash Equilibrium with the desired properties can exist.
+We will show a counterexample to the requirement that the item it always allocated to the agent with the highest value. Specifically, we will exhibit a scenario where $v_1 < v_2$ but $s_1(v_1) > s_2(v_2)$ and so agent 1 will be allocated the item despite having a lower valuation. Let $v_1 = \frac{1}{2}$ and let $v_2 = \frac{3}{4}$. Then, $$s_1(v_1) = \frac{1}{2}\left(\frac{1}{2}+\frac{1}{2}\right) = \frac{1}{2}$$ but $$s_2(v_2) = \frac{3}{8}<\frac{1}{2}.$$ Therefore, no Bayes-Nash Equilibrium with the desired properties can exist.
\end{enumerate}