diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2014-09-24 01:18:01 -0400 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2014-09-24 01:18:01 -0400 |
| commit | 7357385b5fcd9a564bcb545cfd0def6893e62052 (patch) | |
| tree | acf2c3264dab9b1577fa0e11310a2bd2f6ae567e /ps1 | |
| parent | 52d821568a337e4bfa226fe127e2e592c42b3457 (diff) | |
| download | econ2099-7357385b5fcd9a564bcb545cfd0def6893e62052.tar.gz | |
Remaining typos in P1
Diffstat (limited to 'ps1')
| -rw-r--r-- | ps1/main.tex | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/ps1/main.tex b/ps1/main.tex index 0605359..84a6e7a 100644 --- a/ps1/main.tex +++ b/ps1/main.tex @@ -73,12 +73,12 @@ For agent 1,$$\Pr[v_1 \geq v_2] = \begin{cases} \int_{\frac{1}{2}}^{v_1} 2\,dx = For agent 1, $P_1^{SP}(v_1)$ equals $\E[v_2|v_1\geq v_2]\cdot \Pr[v_1 \geq v_2]$. By Revenue Equivalence (Corollary 2.5), for $i \in \{1,2\}$, $P_i^{SP}(v_i) = P_i^{FP}(v_i)$. We directly compute $$\E[v_2|v_1\geq v_2] = \begin{cases} \frac{1}{2}\big(v_1+\frac{1}{2}\big) &\text{ if } v_1 > \frac{1}{2} \\ 0 &\text{ if } v_1 \leq \frac{1}{2} \end{cases}$$ -Indeed, in expectation a uniform random variable evenly divides the interval it is over, and conditioned on $v_1\geq v_2$, $v_2$ is $U\big[\frac{1}{2},1\big]$. Thus, +Indeed, in expectation a uniform random variable evenly divides the interval it is over, and conditioned on $v_1\geq v_2$, $v_2$ is $U\big[\frac{1}{2},v_1\big]$. Thus, $$s_1(v_1) = \begin{cases} \frac{1}{2}\big(v_1+\frac{1}{2}\big) &\text{ if } v_1 > \frac{1}{2} \\ 0 &\text{ if } v_1 \leq \frac{1}{2} \end{cases}.$$ For agent 2, $$\Pr[v_2 \geq v_1] = \int_{0}^{v_2}\,dx = v_2$$ -Computing $$\E[v_1|v_2\geq v_1] = \int_0^{v_2} x\,dx = \frac{v_2}{2}$$ +Computing $$\E[v_1|v_2\geq v_1] = \frac{v_2}{2}$$ since conditioned on $v_2\geq v_1$, $v_1$ is $U\big[0,v_2\big]$. So $$s_2(v_2) = \frac{v_2}{2}.$$ |
