diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2014-10-19 14:36:00 -0400 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2014-10-19 14:36:00 -0400 |
| commit | 4a9ac7e8e5552992ec780f1c18c88e36d577a1a5 (patch) | |
| tree | 9d09a7b1ebd4fd968c89f835ea617fbd9da85059 /ps2/main.tex | |
| parent | df96c3c814e1cf0fd23f9cbffb24d94eff1bf32c (diff) | |
| download | econ2099-4a9ac7e8e5552992ec780f1c18c88e36d577a1a5.tar.gz | |
[ps2] additional problem
Diffstat (limited to 'ps2/main.tex')
| -rw-r--r-- | ps2/main.tex | 103 |
1 files changed, 100 insertions, 3 deletions
diff --git a/ps2/main.tex b/ps2/main.tex index a207b12..6979b97 100644 --- a/ps2/main.tex +++ b/ps2/main.tex @@ -21,9 +21,11 @@ \setlength{\itemsep}{-1ex} \setlength{\parsep}{0pt}}% {\end{description}} -\DeclareMathOperator*{\E}{\mathbb{E}} +\DeclareMathOperator{\E}{\mathbb{E}} \let\Pr\relax -\DeclareMathOperator*{\Pr}{\mathbb{P}} +\DeclareMathOperator{\Pr}{\mathbb{P}} +\newcommand{\ex}[2][]{\E_{#1}\left[#2\right]} +\newcommand{\prob}[2][]{\Pr_{#1}\left[#2\right]} \newcommand{\inprod}[1]{\left\langle #1 \right\rangle} \newcommand{\R}{\mathbb{R}} @@ -33,7 +35,7 @@ \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} -\author{Thibaut Horel \& Paul Tylkin} +\author{Thibaut Horel \and Paul Tylkin} \title{Economics 2099 Problem Set 2 -- Solutions} \begin{document} @@ -47,4 +49,99 @@ \section*{Additional Problem} +We prove that $\ex[\mathbf{F}]{\max_i +v_i}\leq\frac{e}{e-1}\ex[\mathbf{F}^I]{\max_i v_i}$. We first prove it for +finite support distributions by reduction to Lemma 4.13 in the lecture notes. +We then extend the result to general distributions using a density argument +(general distributions can be approximated arbitrarily well by finite support +distributions). + +\paragraph{Finite support distributions} +Let us first assume that $\mathbf{F}$ has a finite support. We write $A_i$ the +set of atoms of $\mathbf{F}_i$ (the $i$-th marginal of $\mathbf{F}$) so that +both $\mathbf{F}$ and $\mathbf{F}^I$ define a probability distribution over +$A_1\times\ldots\times A_n$. We now define $A$ to be the disjoint union of +$A_1$ to $A_n$: +\begin{displaymath} + A = \coprod_{i=1}^n A_i + = \big\{ (a, i)\, |\, x\in A_i,\; 1\leq i \leq n\big\} +\end{displaymath} + +Note that there is a canonical injection from $A_1\times\ldots\times A_n$ to +$\mathcal{P}(A)$: +\begin{displaymath} + (a_1,\ldots, a_n)\mapsto \big\{ (a_1, 1),\ldots, (a_n, n)\big\} +\end{displaymath} +so that $\mathbf{F}$ and $\mathbf{F}^I$ naturally define a probability +distribution over subsets of $A$: +\begin{displaymath} + \Pr^A_{\mathbf{F}}\big( \{(a_1, i_1),\ldots,(a_k, i_k)\}\big) = + \begin{cases} + \Pr_{\mathbf{F}} (a_1,\ldots, a_k)&\text{if } \{i_1,\ldots,i_k\} + = \{1,\ldots, n\}\\ + 0&\text{otherwise} + \end{cases} +\end{displaymath} +and similarly for $\Pr^A_{\mathbf{F^I}}$. That is, the only subsets of $A$ which +have a non-zero probability are the ones which ``correspond'' to a $n$-tuple in +$A_1\times\ldots\times A_n$ (they are in the image of the canonical injection +given above). + +Similarly, the function $\max_i v_i$ defined over $A_1\times\ldots\times A_n$ +can be extended to subsets of $A$ by: +\begin{displaymath} + g(\{(a_1, i_1),\ldots, (a_k, i_k)\}) \eqdef \max\{a_1,\ldots, a_k\} +\end{displaymath} + +The consequence of this construction\footnote{This construction might appear + a bit technical. What we would naturally do is to consider the set of all + atoms across all coordinates, but this would not work in cases where the + same atom can appear at different coordinates. This is why we have to + consider the disjoin union, with ``independent'' copies of the atoms.} is + the following key property: +\begin{displaymath} + \E_{S\sim\Pr_{\mathbf{F}}^A}[g(S)] = \E_{\mathbf{F}}[\max_i v_i] +\end{displaymath} +and similarly for $\mathbf{F}^I$. Now, we note that $g$ is +a maximum-weight-element set function, where the weight of $(a, i)\in A$ is +simply $a$. Hence we can apply Lemma 4.13 to $g$ for subsets of $A$ and obtain: +\begin{displaymath} + \E_{\mathbf{F}}[\max_i v_i] = + \E_{S\sim\Pr_{\mathbf{F}}^A}[g(S)] + \geq \frac{e}{e-1} + \E_{S\sim\Pr_{\mathbf{F^I}}^A}[g(S)]= + \E_{\mathbf{F^I}}[\max_i v_i] +\end{displaymath} + +\paragraph{General distributions} We first look at a continuous distribution +$\mathbf{F}$ with bounded support. On the support of $\mathbf{F}$, it is +possible to approximate its CDF arbitrarily well in $L^\infty$ norm (hence in +$L^2$ norm since we are on a bounded set) by simple functions (convex +combination of step functions). But a step function is simply the CDF of +a dirac distribution. Hence, we can approximate $\mathbf{F}$ arbitrarily well +in $L^2$ norm with finite support distributions. But convergence in $L^2$ norm +implies weak convergence by Cauchy-Schwarz inequality. That is, we have +a sequence $F_n$ of finite support distribution such that: +\begin{displaymath} + \E_{F_n}[\max_i v_i] \xrightarrow[n\rightarrow \infty]{} \E_F[\max_i v_i] +\end{displaymath} +we can apply the previous result for each of the $F_n$ and take the limit to +obtain again: +\begin{displaymath} + \E_{\mathbf{F}}[\max_i v_i] \geq \E_{\mathbf{F^I}}[\max_i v_i] +\end{displaymath} + +When $\mathbf{F}$ does not have bounded support, we can truncate $\mathbf{F}$ +by considering its restriction to an increasing sequence of bounded rectangles: +$K_n = \prod_{i=1}^n [-n, n]$. We can apply the previous result to each of the +truncated distributions and again take the limit as $n\rightarrow\infty$. The +validity of this last limit will depend on the exact technical assumptions we +make on $\mathbf{F}$ (basically we need $F$ to be quickly decreasing outside of +bounded intervals). + +More generally, the previous approach will apply as long as we are considering +a distribution $\mathbf{F}$ in a space of distributions for which finite +support distributions are dense for the weak topology. There are various +assumptions with various level of technicality which imply such a density. + \end{document} |
