summaryrefslogtreecommitdiffstats
path: root/slides/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'slides/main.tex')
-rwxr-xr-xslides/main.tex359
1 files changed, 359 insertions, 0 deletions
diff --git a/slides/main.tex b/slides/main.tex
new file mode 100755
index 0000000..ed10070
--- /dev/null
+++ b/slides/main.tex
@@ -0,0 +1,359 @@
+\documentclass[10pt]{beamer}
+\usepackage[utf8x]{inputenc}
+\usepackage{amsmath,bbm,verbatim, amsthm}
+\usepackage{algpseudocode,algorithm,bbding}
+\usepackage{graphicx}
+\usepackage{booktabs}
+\usepackage{caption}
+\usepackage{subcaption}
+\DeclareMathOperator*{\argmax}{arg\,max}
+\DeclareMathOperator*{\argmin}{arg\,min}
+\newcommand{\E}{{\tt E}}
+
+\title[Harvard EconCS Seminar]{Scalable Methods for Adaptive Seeding\\
+in Social Networks}
+\author[Thibaut Horel]{Thibaut Horel \and Yaron Singer}
+
+%\setbeamercovered{transparent}
+\setbeamertemplate{navigation symbols}{}
+
+\newcommand{\ie}{\emph{i.e.}}
+\newcommand{\eg}{\emph{e.g.}}
+\newcommand{\etc}{\emph{etc.}}
+\newcommand{\etal}{\emph{et al.}}
+\newcommand{\reals}{\ensuremath{\mathbb{R}}}
+\AtBeginSection[]
+{
+\begin{frame}<beamer>
+\frametitle{Outline}
+\tableofcontents[currentsection]
+\end{frame}
+}
+
+\begin{document}
+
+\maketitle
+
+\begin{frame}{}
+
+ \begin{center}
+ \begin{large}
+ How to leverage social networks to
+
+ \vspace{1em}
+
+ spread information effectively?
+ \end{large}
+ \end{center}
+
+\end{frame}
+
+\begin{frame}{Influence Maximization}
+ \begin{center}
+ \includegraphics<1>[width=0.8\textwidth]{graph.pdf}
+ \includegraphics<2>[width=0.8\textwidth]{graph2.pdf}
+ \includegraphics<3->[width=0.8\textwidth]{graph3.pdf}
+\end{center}
+ \begin{center}
+ Which nodes to actively seed to maximize your influence? \only<4>{[KKT03]}
+ \end{center}
+\end{frame}
+
+\begin{frame}{Why it doesn't work}
+ \begin{itemize}
+ \item You cannot seed anyone in the network
+ \item Influential users are rare
+ \end{itemize}
+ \vspace{1em}
+ \begin{center}
+ \includegraphics<1>[width=0.7\textwidth]{graph.pdf}
+ \includegraphics<2>[width=0.7\textwidth]{graph4.pdf}
+ \includegraphics<3>[width=0.7\textwidth]{graph5.pdf}
+ \includegraphics<4>[width=0.7\textwidth]{graph6.pdf}
+ \end{center}
+\end{frame}
+
+\begin{frame}{Friendship Paradox}
+ \begin{center}
+ \begin{large}
+ ``Your friends have more friends than you do.''
+\end{large}
+\end{center}
+ \vspace{1em}
+ \only<2->{
+ \begin{overprint}
+ \onslide<2>
+ \begin{center}
+ \includegraphics[width=0.7\textwidth]{graph4.pdf}
+ \end{center}
+ \onslide<3>
+ \begin{center}
+ \includegraphics[width=0.9\textwidth]{dist.pdf}
+ \end{center}
+\end{overprint}}
+\end{frame}
+
+\begin{frame}{Adaptive Seeding}
+ \begin{itemize}
+ \item Two-stage process
+ \item Reach influential nodes through their friends
+ \end{itemize}
+ \vspace{1em}
+ \begin{center}
+ \includegraphics<1>[width=0.7\textwidth]{graph4.pdf}
+ \includegraphics<2>[width=0.7\textwidth]{graph7.pdf}
+ \includegraphics<3>[width=0.7\textwidth]{graph8.pdf}
+ \includegraphics<4>[width=0.7\textwidth]{graph9.pdf}
+ \includegraphics<5>[width=0.7\textwidth]{graph10.pdf}
+ \end{center}
+ \alert{Question:} Which nodes to select in the first stage? [SS13]
+\end{frame}
+
+\begin{frame}{Outline}
+\tableofcontents
+\end{frame}
+
+\section{Adaptive Seeding}
+
+\begin{frame}{Model}
+ Influence maximization:
+\begin{itemize}
+ \item graph $(V,E)$
+ \item influence function $f:2^V\rightarrow\mathbb{R}_+$
+ \item budget $k$
+\end{itemize}
+\vspace{1em}
+\pause
+Plus:
+\begin{itemize}
+ \item core set $X$
+ \item for $u\in N(X)$, probability $p_u$ of becoming seedable
+\end{itemize}
+\end{frame}
+
+\begin{frame}{Adaptive Seeding}
+\begin{itemize}
+ \item \textbf{First stage:} select $S\subseteq X$ ($|S|\leq k$)
+ \vspace{1em}
+ \pause
+ \item each node $u\in N(S)$ becomes seedable w.p $p_u$
+ \\$\Rightarrow$ $R\subseteq N(S)$ subset of seedable nodes
+ \vspace{1em}
+ \pause
+ \item \textbf{Second stage:} maximize $f$ over $R$ with remaining budget ($k-|S|$)
+\end{itemize}
+\end{frame}
+
+\begin{frame}{Problem}
+ \begin{itemize}
+ \item \textbf{First stage:} select $S\subseteq X$ ($|S|\leq k$)
+ \vspace{1em}
+ \pause
+ \item $p_R$ probability that $R\subseteq N(S)$ becomes seedable:
+ \vspace{1em}
+ \pause
+ \item expected value when selecting $S$ ($|S|\leq k$):
+ \begin{displaymath}
+ F(S) = \sum_{R\subseteq N(S)} p_R\; \max_{\substack{T\subseteq R\\ |T|\leq k-|S|}} f(T)
+ \end{displaymath}
+ \end{itemize}
+ \vspace{2em}
+ \alert{Problem:} Compute $F^* \in \argmax_{|S|\leq k} F(S)$
+\end{frame}
+
+\begin{frame}{Problem}
+ \begin{displaymath}
+ F(S) = \sum_{R\subseteq N(S)} p_R\; \max_{\substack{T\subseteq R\\ |T|\leq k-|S|}} f(T)
+ \end{displaymath}
+
+ \vspace{1cm}
+
+ \alert{Problem:} Compute $F^* \in \argmax_{|S|\leq k} F(S)$
+
+ \vspace{1cm}
+
+ Even when the probabilities are all one:
+ \begin{itemize}
+ \item NP-hard problem
+ \item not submodular
+ \item computing $F(S)$ takes exponential time
+ \end{itemize}
+\vspace{1em}
+
+\pause
+However, $(1-1/e)^2$-approx. algorithm [SS13,\ldots]
+\pause
+\vspace{1em}
+
+But\ldots{} running time $O(n^\alpha)$, $\alpha \geq 10$.
+\end{frame}
+
+\begin{frame}{Non-adaptive relaxation}
+\begin{itemize}
+ \item commit in the first stage on the nodes to seed in the second stage
+ \item randomize
+\end{itemize}
+\vspace{1em}
+\pause
+
+A non-adaptive solution is a pair $(S, q)$
+\begin{itemize}
+ \item $S$: nodes selected in the first stage
+ \item $q$: if node $u\in N(S)$ realizes, select it w.p $q_u$
+\end{itemize}
+\vspace{1em}
+\pause
+
+Within budget in expectation:
+\begin{displaymath}
+ |S| + \sum_{u\in N(S)} p_u q_u\leq k
+\end{displaymath}
+\end{frame}
+
+\begin{frame}{Non-adaptive problem}
+\begin{displaymath}
+ \begin{split}
+ \max_{(S,q)}& \sum_{R\subseteq N(S)} (p\cdot q)_R \;f(R)\\
+ \text{s.t.}&\; |S| + \sum_{u\in N(S)} p_uq_u \leq k
+\end{split}
+\end{displaymath}
+\pause
+\vspace{1cm}
+
+Non-adaptive problem:
+\begin{itemize}
+ \item $(1-1/e)$ approx. to the adaptive problem
+ \item can be solved with approximation $(1-1/e)$
+ \pause
+ \item how to construct adaptive solution from non-adaptive solution?
+ \begin{displaymath}
+ (S,q) \mapsto S
+ \end{displaymath}
+\end{itemize}
+\end{frame}
+
+\begin{frame}{Non-adaptive relaxation}
+ \begin{center}
+ \includegraphics[height=0.5\textheight]{diag.pdf}
+ \end{center}
+\end{frame}
+
+\section{Additive Adaptive Seeding}
+
+\begin{frame}{Additive influence functions}
+
+From now on:
+\begin{displaymath}
+ f(S) = \sum_{u\in S} w_u
+\end{displaymath}
+
+\vspace{1cm}
+$w_u$ is the weight of node $u$:
+\begin{itemize}
+ \item $w_u = \text{deg}(u)$
+ \item $w_u$, influence of $u$ in the voter model
+ \item $w_u$ comes from an external source (e.g. Klout)
+\end{itemize}
+\end{frame}
+
+\begin{frame}{Results}
+ \begin{center}
+ \includegraphics<1>[height=0.5\textheight]{diag.pdf}
+ \includegraphics<2>[height=0.5\textheight]{diag2.pdf}
+ \end{center}
+\end{frame}
+
+\begin{frame}{Non-adaptive Problem (bis)}
+ \only<1>{
+\begin{displaymath}
+ \begin{split}
+ \max_{(S,q)}& \sum_{R\subseteq N(S)} (p\cdot q)_R \;f(R)\\
+ \text{s.t.}&\; |S| + \sum_{u\in N(S)} p_uq_u \leq k
+\end{split}
+}
+
+ \only<2->{
+\begin{displaymath}
+ \begin{split}
+ \max_{(S,q)}& \sum_{u\in N(S)} p_uq_uw_u\\
+ \text{s.t.}&\; |S| + \sum_{u\in N(S)} p_uq_u \leq k
+\end{split}
+}
+\end{displaymath}
+
+\pause
+
+\pause
+\vspace{1em}
+Two algorithms
+\begin{itemize}
+ \item submodular maximization: $\max_q \sum_{u\in N(S)} p_uq_uw_u$ is submodular
+ \item LP relaxation
+\end{itemize}
+
+\pause
+\vspace{1em}
+Running time: $O(k^2 n^2)$.
+\end{frame}
+
+
+\section{Experimental Results}
+
+\begin{frame}{Data Collection}
+
+\begin{table}[t]
+ \centering
+ \setlength{\tabcolsep}{3pt}
+ \begin{tabular}{llrr}
+ \toprule
+ Vertical & Page & $m$ & $n$ \\%& $S$ & $F$\\
+ \midrule
+ Charity & Kiva & 978 & 131334 \\%& 134.29 & 1036.26\\
+ Travel & Lonely Planet & 753 & 113250 \\%& 150.40 & 898.50\\
+ %Public Action & LaManifPourTous & 1041 & 97959 \\%& 94.10 & 722.02\\
+ Fashion & GAP & 996 & 115524 \\%& 115.99 & 681.98\\
+ Events & Coachella & 826 & 102291 \\%& 123.84 & 870.16\\
+ Politics & Green Party & 1044 & 83490 \\%& 79.97 & 1053.25\\
+ Technology & Google Nexus & 895 & 137995 \\%& 154.19 & 827.84\\
+ News & The New York Times & 894 & 156222 \\%& 174.74 & 1033.94 \\
+ %Consumption & Peet's & 776 & 56268 \\%& 72.51 & 520.47\\
+ Entertainment & HBO & 828 & 108699 \\%& 131.28 & 924.09\\
+ \bottomrule
+\end{tabular}
+\end{table}
+\end{frame}
+
+\begin{frame}{Friendship paradox (bis)}
+ \begin{center}
+ \includegraphics[width=0.8\textwidth]{para.pdf}
+ \end{center}
+\end{frame}
+
+\begin{frame}{Performance}
+ \begin{center}
+ \includegraphics[height=0.8\textheight]{perf10.pdf}
+ \end{center}
+\end{frame}
+
+\begin{frame}{Performance (bis)}
+\begin{figure}[t]
+ \begin{subfigure}[t]{0.48\textwidth}
+ \includegraphics[width=\textwidth]{prob.pdf}
+ \caption{}
+\end{subfigure}
+\hspace{1pt}
+\begin{subfigure}[t]{0.48\textwidth}
+ \includegraphics[width=\textwidth]{hbo_likes.pdf}
+ \caption{}
+ \end{subfigure}
+\end{figure}
+\end{frame}
+
+\begin{frame}{Running time}
+ \begin{center}
+ \includegraphics[width=\textwidth]{sampling2.pdf}
+ \end{center}
+
+\end{frame}
+
+\end{document}