diff options
Diffstat (limited to 'slides/main.tex')
| -rwxr-xr-x | slides/main.tex | 359 |
1 files changed, 359 insertions, 0 deletions
diff --git a/slides/main.tex b/slides/main.tex new file mode 100755 index 0000000..ed10070 --- /dev/null +++ b/slides/main.tex @@ -0,0 +1,359 @@ +\documentclass[10pt]{beamer} +\usepackage[utf8x]{inputenc} +\usepackage{amsmath,bbm,verbatim, amsthm} +\usepackage{algpseudocode,algorithm,bbding} +\usepackage{graphicx} +\usepackage{booktabs} +\usepackage{caption} +\usepackage{subcaption} +\DeclareMathOperator*{\argmax}{arg\,max} +\DeclareMathOperator*{\argmin}{arg\,min} +\newcommand{\E}{{\tt E}} + +\title[Harvard EconCS Seminar]{Scalable Methods for Adaptive Seeding\\ +in Social Networks} +\author[Thibaut Horel]{Thibaut Horel \and Yaron Singer} + +%\setbeamercovered{transparent} +\setbeamertemplate{navigation symbols}{} + +\newcommand{\ie}{\emph{i.e.}} +\newcommand{\eg}{\emph{e.g.}} +\newcommand{\etc}{\emph{etc.}} +\newcommand{\etal}{\emph{et al.}} +\newcommand{\reals}{\ensuremath{\mathbb{R}}} +\AtBeginSection[] +{ +\begin{frame}<beamer> +\frametitle{Outline} +\tableofcontents[currentsection] +\end{frame} +} + +\begin{document} + +\maketitle + +\begin{frame}{} + + \begin{center} + \begin{large} + How to leverage social networks to + + \vspace{1em} + + spread information effectively? + \end{large} + \end{center} + +\end{frame} + +\begin{frame}{Influence Maximization} + \begin{center} + \includegraphics<1>[width=0.8\textwidth]{graph.pdf} + \includegraphics<2>[width=0.8\textwidth]{graph2.pdf} + \includegraphics<3->[width=0.8\textwidth]{graph3.pdf} +\end{center} + \begin{center} + Which nodes to actively seed to maximize your influence? \only<4>{[KKT03]} + \end{center} +\end{frame} + +\begin{frame}{Why it doesn't work} + \begin{itemize} + \item You cannot seed anyone in the network + \item Influential users are rare + \end{itemize} + \vspace{1em} + \begin{center} + \includegraphics<1>[width=0.7\textwidth]{graph.pdf} + \includegraphics<2>[width=0.7\textwidth]{graph4.pdf} + \includegraphics<3>[width=0.7\textwidth]{graph5.pdf} + \includegraphics<4>[width=0.7\textwidth]{graph6.pdf} + \end{center} +\end{frame} + +\begin{frame}{Friendship Paradox} + \begin{center} + \begin{large} + ``Your friends have more friends than you do.'' +\end{large} +\end{center} + \vspace{1em} + \only<2->{ + \begin{overprint} + \onslide<2> + \begin{center} + \includegraphics[width=0.7\textwidth]{graph4.pdf} + \end{center} + \onslide<3> + \begin{center} + \includegraphics[width=0.9\textwidth]{dist.pdf} + \end{center} +\end{overprint}} +\end{frame} + +\begin{frame}{Adaptive Seeding} + \begin{itemize} + \item Two-stage process + \item Reach influential nodes through their friends + \end{itemize} + \vspace{1em} + \begin{center} + \includegraphics<1>[width=0.7\textwidth]{graph4.pdf} + \includegraphics<2>[width=0.7\textwidth]{graph7.pdf} + \includegraphics<3>[width=0.7\textwidth]{graph8.pdf} + \includegraphics<4>[width=0.7\textwidth]{graph9.pdf} + \includegraphics<5>[width=0.7\textwidth]{graph10.pdf} + \end{center} + \alert{Question:} Which nodes to select in the first stage? [SS13] +\end{frame} + +\begin{frame}{Outline} +\tableofcontents +\end{frame} + +\section{Adaptive Seeding} + +\begin{frame}{Model} + Influence maximization: +\begin{itemize} + \item graph $(V,E)$ + \item influence function $f:2^V\rightarrow\mathbb{R}_+$ + \item budget $k$ +\end{itemize} +\vspace{1em} +\pause +Plus: +\begin{itemize} + \item core set $X$ + \item for $u\in N(X)$, probability $p_u$ of becoming seedable +\end{itemize} +\end{frame} + +\begin{frame}{Adaptive Seeding} +\begin{itemize} + \item \textbf{First stage:} select $S\subseteq X$ ($|S|\leq k$) + \vspace{1em} + \pause + \item each node $u\in N(S)$ becomes seedable w.p $p_u$ + \\$\Rightarrow$ $R\subseteq N(S)$ subset of seedable nodes + \vspace{1em} + \pause + \item \textbf{Second stage:} maximize $f$ over $R$ with remaining budget ($k-|S|$) +\end{itemize} +\end{frame} + +\begin{frame}{Problem} + \begin{itemize} + \item \textbf{First stage:} select $S\subseteq X$ ($|S|\leq k$) + \vspace{1em} + \pause + \item $p_R$ probability that $R\subseteq N(S)$ becomes seedable: + \vspace{1em} + \pause + \item expected value when selecting $S$ ($|S|\leq k$): + \begin{displaymath} + F(S) = \sum_{R\subseteq N(S)} p_R\; \max_{\substack{T\subseteq R\\ |T|\leq k-|S|}} f(T) + \end{displaymath} + \end{itemize} + \vspace{2em} + \alert{Problem:} Compute $F^* \in \argmax_{|S|\leq k} F(S)$ +\end{frame} + +\begin{frame}{Problem} + \begin{displaymath} + F(S) = \sum_{R\subseteq N(S)} p_R\; \max_{\substack{T\subseteq R\\ |T|\leq k-|S|}} f(T) + \end{displaymath} + + \vspace{1cm} + + \alert{Problem:} Compute $F^* \in \argmax_{|S|\leq k} F(S)$ + + \vspace{1cm} + + Even when the probabilities are all one: + \begin{itemize} + \item NP-hard problem + \item not submodular + \item computing $F(S)$ takes exponential time + \end{itemize} +\vspace{1em} + +\pause +However, $(1-1/e)^2$-approx. algorithm [SS13,\ldots] +\pause +\vspace{1em} + +But\ldots{} running time $O(n^\alpha)$, $\alpha \geq 10$. +\end{frame} + +\begin{frame}{Non-adaptive relaxation} +\begin{itemize} + \item commit in the first stage on the nodes to seed in the second stage + \item randomize +\end{itemize} +\vspace{1em} +\pause + +A non-adaptive solution is a pair $(S, q)$ +\begin{itemize} + \item $S$: nodes selected in the first stage + \item $q$: if node $u\in N(S)$ realizes, select it w.p $q_u$ +\end{itemize} +\vspace{1em} +\pause + +Within budget in expectation: +\begin{displaymath} + |S| + \sum_{u\in N(S)} p_u q_u\leq k +\end{displaymath} +\end{frame} + +\begin{frame}{Non-adaptive problem} +\begin{displaymath} + \begin{split} + \max_{(S,q)}& \sum_{R\subseteq N(S)} (p\cdot q)_R \;f(R)\\ + \text{s.t.}&\; |S| + \sum_{u\in N(S)} p_uq_u \leq k +\end{split} +\end{displaymath} +\pause +\vspace{1cm} + +Non-adaptive problem: +\begin{itemize} + \item $(1-1/e)$ approx. to the adaptive problem + \item can be solved with approximation $(1-1/e)$ + \pause + \item how to construct adaptive solution from non-adaptive solution? + \begin{displaymath} + (S,q) \mapsto S + \end{displaymath} +\end{itemize} +\end{frame} + +\begin{frame}{Non-adaptive relaxation} + \begin{center} + \includegraphics[height=0.5\textheight]{diag.pdf} + \end{center} +\end{frame} + +\section{Additive Adaptive Seeding} + +\begin{frame}{Additive influence functions} + +From now on: +\begin{displaymath} + f(S) = \sum_{u\in S} w_u +\end{displaymath} + +\vspace{1cm} +$w_u$ is the weight of node $u$: +\begin{itemize} + \item $w_u = \text{deg}(u)$ + \item $w_u$, influence of $u$ in the voter model + \item $w_u$ comes from an external source (e.g. Klout) +\end{itemize} +\end{frame} + +\begin{frame}{Results} + \begin{center} + \includegraphics<1>[height=0.5\textheight]{diag.pdf} + \includegraphics<2>[height=0.5\textheight]{diag2.pdf} + \end{center} +\end{frame} + +\begin{frame}{Non-adaptive Problem (bis)} + \only<1>{ +\begin{displaymath} + \begin{split} + \max_{(S,q)}& \sum_{R\subseteq N(S)} (p\cdot q)_R \;f(R)\\ + \text{s.t.}&\; |S| + \sum_{u\in N(S)} p_uq_u \leq k +\end{split} +} + + \only<2->{ +\begin{displaymath} + \begin{split} + \max_{(S,q)}& \sum_{u\in N(S)} p_uq_uw_u\\ + \text{s.t.}&\; |S| + \sum_{u\in N(S)} p_uq_u \leq k +\end{split} +} +\end{displaymath} + +\pause + +\pause +\vspace{1em} +Two algorithms +\begin{itemize} + \item submodular maximization: $\max_q \sum_{u\in N(S)} p_uq_uw_u$ is submodular + \item LP relaxation +\end{itemize} + +\pause +\vspace{1em} +Running time: $O(k^2 n^2)$. +\end{frame} + + +\section{Experimental Results} + +\begin{frame}{Data Collection} + +\begin{table}[t] + \centering + \setlength{\tabcolsep}{3pt} + \begin{tabular}{llrr} + \toprule + Vertical & Page & $m$ & $n$ \\%& $S$ & $F$\\ + \midrule + Charity & Kiva & 978 & 131334 \\%& 134.29 & 1036.26\\ + Travel & Lonely Planet & 753 & 113250 \\%& 150.40 & 898.50\\ + %Public Action & LaManifPourTous & 1041 & 97959 \\%& 94.10 & 722.02\\ + Fashion & GAP & 996 & 115524 \\%& 115.99 & 681.98\\ + Events & Coachella & 826 & 102291 \\%& 123.84 & 870.16\\ + Politics & Green Party & 1044 & 83490 \\%& 79.97 & 1053.25\\ + Technology & Google Nexus & 895 & 137995 \\%& 154.19 & 827.84\\ + News & The New York Times & 894 & 156222 \\%& 174.74 & 1033.94 \\ + %Consumption & Peet's & 776 & 56268 \\%& 72.51 & 520.47\\ + Entertainment & HBO & 828 & 108699 \\%& 131.28 & 924.09\\ + \bottomrule +\end{tabular} +\end{table} +\end{frame} + +\begin{frame}{Friendship paradox (bis)} + \begin{center} + \includegraphics[width=0.8\textwidth]{para.pdf} + \end{center} +\end{frame} + +\begin{frame}{Performance} + \begin{center} + \includegraphics[height=0.8\textheight]{perf10.pdf} + \end{center} +\end{frame} + +\begin{frame}{Performance (bis)} +\begin{figure}[t] + \begin{subfigure}[t]{0.48\textwidth} + \includegraphics[width=\textwidth]{prob.pdf} + \caption{} +\end{subfigure} +\hspace{1pt} +\begin{subfigure}[t]{0.48\textwidth} + \includegraphics[width=\textwidth]{hbo_likes.pdf} + \caption{} + \end{subfigure} +\end{figure} +\end{frame} + +\begin{frame}{Running time} + \begin{center} + \includegraphics[width=\textwidth]{sampling2.pdf} + \end{center} + +\end{frame} + +\end{document} |
