1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
from bs4 import BeautifulSoup
import os.path as op
from client.tasks import normalize
from itertools import chain
from random import sample
from multiprocessing import Pool
from ads import fs, fs_p, fs_ps, fs_p_sample
import numpy as np
import pulp
import sys
from random import seed, betavariate, normalvariate
import matplotlib.pyplot as plt
from scipy.sparse import coo_matrix
from sklearn.preprocessing import normalize as nm
DATA_DIR = "../facebook_data"
#DATASETS = ["hbo", "nyt", "lp", "google", "lmpt", "gp", "kiva", "coachella",
# "peet", "gap"]
DATASETS = ["hbo", "nyt", "lp", "google", "gp", "kiva", "coachella",
"gap"]
SYNTH_DIR = "../apgl"
SYNTH_DATASETS = ["b-a", "kk", "sw"]
def build_graph2(dataset):
users_file = op.join(DATA_DIR, dataset + "_users.txt")
seed_file = op.join(DATA_DIR, dataset + ".txt")
degrees = {}
graph = {}
with open(users_file) as f:
for line in f:
values = line.strip().split()
degrees[values[0]] = int(values[1])
soup = BeautifulSoup(open(seed_file))
links = [div.a["href"] for div in soup.findAll("div", class_="fsl")]
for link in links:
basename, fname, getname = normalize(link)
long_name = op.join(DATA_DIR, "facebook", fname)
if not op.isfile(long_name):
continue
else:
with open(long_name) as f:
friends = [normalize(line.strip())[1] for line in f]
friends = [friend for friend in friends
if (friend in degrees) and degrees[friend] > 0]
if len(friends) > 0:
friends = list(set(friends))
friends.sort(key=degrees.get, reverse=True)
graph[fname] = friends
degrees[fname] = len(friends)
print dataset, len(graph), len(list(sd_users(graph)))
return graph, degrees
def build_graph1(dataset):
fname = op.join(SYNTH_DIR, dataset + ".txt")
degrees = {}
graph = {}
with open(fname) as fh:
for line in fh:
values = line.strip().split("\t")
node = int(values[0])
friends = zip(*[iter(values[1:])] * 2)
friends = [map(int, f) for f in friends]
for friend in friends:
degrees[friend[0]] = friend[1]
graph[node] = [friend[0] for friend in friends]
degrees[node] = len(graph[node])
print fname, len(graph), len(list(sd_users(graph)))
return graph, degrees
def build_graph(dataset):
if dataset in DATASETS or dataset == "big":
return build_graph2(dataset)
else:
return build_graph1(dataset)
def build_graph3(dataset):
d = {}
e = {}
with open(dataset + ".txt") as f:
for line in f:
u, v = map(int, line.strip().split())
d[u, v] = 1
d[v, u] = 1
d[u, u] = 1
if u in e:
e[u].append(v)
else:
e[u] = [v]
i, j = zip(*d.keys())
v = d.values()
m = coo_matrix((v, (i, j)), dtype="float")
m = nm(m, norm='l1', axis=1, copy=False)
return m, e
def voter(mat, node, t):
n = mat.shape[0]
v = np.zeros(n)
u = np.ones(n)
v[node] = 1
for i in xrange(t):
v = mat.dot(v)
return v.dot(u)
def influence_exp(dataset, size):
mat, graph = build_graph3(dataset)
sp = sample(graph.keys(), size)
graph = {s: graph[s] for s in sp}
sd = list(sd_users(graph))
sd += graph.keys()
for t in xrange(100):
degrees = {s: voter(mat, s, t) for s in sd}
#aps(graph, degrees, size)
print im(graph, degrees, size)
def print_graph(dataset):
graph, degrees = build_graph(dataset)
with open(dataset + "_single_graph.txt", "w") as f:
for user, friends in graph.iteritems():
friends_deg = [(friend, str(degrees[friend]))
for friend in friends]
f.write(user + "\t"
+ "\t".join("\t".join(friend) for friend in friends_deg)
+ "\n")
def sd_users(graph):
return chain.from_iterable(graph.itervalues())
def random(graph, degrees, n):
#n = int(len(graph) * ratio)
values = []
for _ in xrange(100):
users = sample(graph, n)
values.append(sum(degrees[user] for user in users))
return sum(values) / float(len(values))
def random_friend(graph, degrees, n):
#n = int(len(graph) * ratio)
values = []
for _ in xrange(100):
users = sample(graph, n / 2)
values.append(sum(degrees[sample(graph[user], 1)[0]] + degrees[user]
for user in users))
return sum(values) / float(len(values))
def im(graph, degrees, n):
#n = int(len(graph) * ratio)
l = list(graph.iterkeys())
l.sort(key=lambda x: degrees[x], reverse=True)
return sum(degrees[user] for user in l[:n])
def aps(graph, degrees, k, p=1, sampl=False):
x = list(set(graph.keys()))
#k = int(len(graph) * ratio) # budget
P = Pool(5)
if p == 1:
m = P.map(fs, zip(range(1, k - 1),
[k] * (k - 1),
[x] * (k - 1),
[graph] * (k - 1),
[degrees] * (k - 1)))
elif type(p) is dict:
m = P.map(fs_ps, zip(range(1, k - 1),
[k] * (k - 1),
[x] * (k - 1),
[graph] * (k - 1),
[degrees] * (k - 1),
[p] * (k - 1)))
elif sampl:
m = P.map(fs_p_sample, zip(range(1, k - 1),
[k] * (k - 1),
[x] * (k - 1),
[graph] * (k - 1),
[degrees] * (k - 1),
[p] * (k - 1)))
else:
m = P.map(fs_p, zip(range(1, k - 1),
[k] * (k - 1),
[x] * (k - 1),
[graph] * (k - 1),
[degrees] * (k - 1),
[p] * (k - 1)))
P.close()
try:
m = max(m)
except ValueError:
m = 0
print m
return m
def generate_degree(degrees, p, distr="beta"):
#plt.figure()
seed()
ps = {}
if distr == "beta":
beta = 5.
alpha = 5. * p / (1 - p)
sample = lambda d: betavariate(alpha, beta)
elif distr == "gauss":
sample = lambda d: normalvariate(p, 0.01)
elif distr == "power":
alpha = 1.
beta = (1. - p) / p
sample = lambda d: betavariate(alpha, beta)
elif distr == "deg":
s = sum((1. / d) for d in degrees.itervalues() if d != 0)
c = len(list(d for d in degrees if d != 0)) * p / s
sample = lambda d: c / d if d != 0 else p
for node, deg in degrees.iteritems():
s = sample(deg)
if s < 0.001:
ps[node] = 0.
elif s > 1.:
ps[node] = 1.
else:
ps[node] = s
#plt.hist(list(ps.itervalues()), 50)
#plt.savefig(distr + "_dist.pdf")
return ps
def compute_performance(dataset):
graph, degrees = build_graph(dataset)
a = [int(len(graph) * i) for i in np.arange(0, 1.1, 0.1)]
r = (a,
[im(graph, degrees, k) for k in a],
[random(graph, degrees, k) for k in a],
[random_friend(graph, degrees, k) for k in a],
[aps(graph, degrees, k) for k in a])
with open(dataset + "_performance.txt", "w") as f:
f.write("\n".join("\t".join(map(str, k)) for k in zip(*r)))
def compute_performance_p(dataset, distr=None):
graph, degrees = build_graph(dataset)
ps = np.arange(0.01, 0.99, 0.1)
a = [int(len(graph) * i) for i in np.arange(0, 1.1, 0.1)]
if distr is None:
l = [[aps(graph, degrees, k, p) for k in a]
for p in ps]
else:
l = [[aps(graph, degrees, k, generate_degree(degrees, p, distr))
for k in a]
for p in ps]
r = [a]
r += l
with open(dataset + "_performance_p_" + str(distr) + ".txt", "w") as f:
f.write("\n".join("\t".join(map(str, k)) for k in zip(*r)))
def lp(graph, degrees, k):
reverse = {}
for user in sd_users(graph):
reverse[user] = []
for user in graph:
for friend in graph[user]:
reverse[friend].append(user)
prob = pulp.LpProblem("ads", pulp.LpMaximize)
x = pulp.LpVariable.dicts("x", graph.keys(), 0., 1.)
y = pulp.LpVariable.dicts("y", sd_users(graph), 0., 1.)
prob += pulp.lpSum([degrees[user] * x[user] for user in graph] +
[degrees[user] * y[user] for user in sd_users(graph)])
for user in sd_users(graph):
prob += pulp.lpSum([x[u] for u in reverse[user]] + [-y[user]]) >= 0
prob += pulp.lpSum([x[u] for u in graph] + [y[u] for u in reverse]) <= k
prob.solve(pulp.COIN_CMD())
print "Status:", pulp.LpStatus[prob.status]
print "Value =", pulp.value(prob.objective)
def lp_perf():
graph, degrees = build_graph("peet")
a = [int(len(graph) * i) for i in np.arange(0, 1.1, 0.1)]
r = (a,
#[aps(graph, degrees, k) for k in a],
[lp(graph, degrees, k) for k in a])
with open("lp_running_time.txt", "w") as f:
f.write("\n".join("\t".join(map(str, k)) for k in zip(*r)))
def lp_time():
graph, degrees = build_graph("big")
sp = sample(graph.keys(), int(sys.argv[2]))
graph = {s: graph[s] for s in sp}
a = int(sys.argv[1])
print len(list(sd_users(graph))), a
lp(graph, degrees, a)
def aps_time():
graph, degrees = build_graph("hbo")
sp = sample(graph.keys(), int(sys.argv[2]))
graph = {s: graph[s] for s in sp}
a = int(sys.argv[1])
print len(list(sd_users(graph))), a
aps(graph, degrees, a, p=0.9, sampl=True)
def lp_time_big():
graph, degrees = build_graph("big")
graph_big = {}
for i in xrange(10):
for user in graph:
graph_big[user + str(i)] = graph[user]
degrees[user + str(i)] = degrees[user]
aps(graph_big, degrees, 500)
def hbo_likes():
graph, degrees = build_graph("hbo")
like_file = op.join(DATA_DIR, "hbo_likes.txt")
likes = {}
for line in open(like_file):
values = line.strip().split("\t")
if "HBO" in values[1:]:
likes[values[0]] = True
a = [int(len(graph) * i) for i in np.arange(0, 1.1, 0.1)]
l = [aps(graph, degrees, k) for k in a]
for user in graph:
graph[user] = [friend for friend in graph[user]
if (friend in degrees and friend in likes)]
r = (a,
[im(graph, degrees, k) for k in a],
[aps(graph, degrees, k) for k in a],
l)
with open("hbo_likes_performance.txt", "w") as f:
f.write("\n".join("\t".join(map(str, k)) for k in zip(*r)))
def stats():
for dataset in ["coachella"]:
graph, degrees = build_graph(dataset)
print dataset, len(graph) * 7, len(list(sd_users(graph))) * 7,\
np.mean([degrees[u] for u in graph]),\
np.mean([degrees[u] for u in sd_users(graph)])
for dataset in ["nyt", "gap", "gp", "kiva"]:
graph, degrees = build_graph(dataset)
print dataset, len(graph) * 6, len(list(sd_users(graph))) * 6,\
np.mean([degrees[u] for u in graph]),\
np.mean([degrees[u] for u in sd_users(graph)])
for dataset in ["google"]:
graph, degrees = build_graph(dataset)
print dataset, len(graph) * 5, len(list(sd_users(graph))) * 5,\
np.mean([degrees[u] for u in graph]),\
np.mean([degrees[u] for u in sd_users(graph)])
for dataset in ["lp", "hbo", "lmpt"]:
graph, degrees = build_graph(dataset)
print dataset, len(graph) * 3, len(list(sd_users(graph))) * 3,\
np.mean([degrees[u] for u in graph]),\
np.mean([degrees[u] for u in sd_users(graph)])
for dataset in ["peet"]:
graph, degrees = build_graph(dataset)
print dataset, len(graph) * 2, len(list(sd_users(graph))) * 2,\
np.mean([degrees[u] for u in graph]),\
np.mean([degrees[u] for u in sd_users(graph)])
if __name__ == "__main__":
#for dataset in SYNTH_DATASETS:
# compute_performance(dataset)
#compute_performance_p("coachella", "power")
#compute_performance("coachella")
#hbo_likes()
#lp_perf()
#lp_time()
#aps_time()
#stats()
#lp_time_big()
# _, degrees = build_graph2("coachella")
# with open("coachella_degrees.txt", "w") as fh:
# for deg in degrees.itervalues():
# fh.write(str(deg) + "\n")
influence_exp("slashdot", 100)
|