1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
\documentclass[10pt]{beamer}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath,bbm,verbatim, amsthm}
\usepackage{algpseudocode,algorithm,bbding}
\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{caption}
\usepackage{subcaption}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator*{\argmin}{arg\,min}
\newcommand{\E}{{\tt E}}
\title[Harvard EconCS Seminar]{Scalable Methods for Adaptive Seeding\\
in Social Networks}
\author[Thibaut Horel]{Thibaut Horel \and Yaron Singer}
%\setbeamercovered{transparent}
\setbeamertemplate{navigation symbols}{}
\newcommand{\ie}{\emph{i.e.}}
\newcommand{\eg}{\emph{e.g.}}
\newcommand{\etc}{\emph{etc.}}
\newcommand{\etal}{\emph{et al.}}
\newcommand{\reals}{\ensuremath{\mathbb{R}}}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection]
\end{frame}
}
\begin{document}
\maketitle
\begin{frame}{}
\begin{center}
\begin{large}
How to leverage social networks to
\vspace{1em}
spread information effectively?
\end{large}
\end{center}
\end{frame}
\begin{frame}{Influence Maximization}
\begin{center}
\includegraphics<1>[width=0.8\textwidth]{graph.pdf}
\includegraphics<2>[width=0.8\textwidth]{graph2.pdf}
\includegraphics<3->[width=0.8\textwidth]{graph3.pdf}
\end{center}
\begin{center}
Which nodes to actively seed to maximize your influence? \only<4>{[KKT03]}
\end{center}
\end{frame}
\begin{frame}{Why it doesn't work}
\begin{itemize}
\item You cannot seed anyone in the network
\item Influential users are rare
\end{itemize}
\vspace{1em}
\begin{center}
\includegraphics<1>[width=0.7\textwidth]{graph.pdf}
\includegraphics<2>[width=0.7\textwidth]{graph4.pdf}
\includegraphics<3>[width=0.7\textwidth]{graph5.pdf}
\includegraphics<4>[width=0.7\textwidth]{graph6.pdf}
\end{center}
\end{frame}
\begin{frame}{Friendship Paradox}
\begin{center}
\begin{large}
``Your friends have more friends than you do.''
\end{large}
\end{center}
\vspace{1em}
\only<2->{
\begin{overprint}
\onslide<2>
\begin{center}
\includegraphics[width=0.7\textwidth]{graph4.pdf}
\end{center}
\onslide<3>
\begin{center}
\includegraphics[width=0.9\textwidth]{dist.pdf}
\end{center}
\end{overprint}}
\end{frame}
\begin{frame}{Adaptive Seeding}
\begin{itemize}
\item Two-stage process
\item Reach influential nodes through their friends
\end{itemize}
\vspace{1em}
\begin{center}
\includegraphics<1>[width=0.7\textwidth]{graph4.pdf}
\includegraphics<2>[width=0.7\textwidth]{graph7.pdf}
\includegraphics<3>[width=0.7\textwidth]{graph8.pdf}
\includegraphics<4>[width=0.7\textwidth]{graph9.pdf}
\includegraphics<5>[width=0.7\textwidth]{graph10.pdf}
\end{center}
\alert{Question:} Which nodes to select in the first stage? [SS13]
\end{frame}
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\section{Adaptive Seeding}
\begin{frame}{Model}
Influence maximization:
\begin{itemize}
\item graph $(V,E)$
\item influence function $f:2^V\rightarrow\mathbb{R}_+$
\item budget $k$
\end{itemize}
\vspace{1em}
\pause
Plus:
\begin{itemize}
\item core set $X$
\item for $u\in N(X)$, probability $p_u$ of becoming seedable
\end{itemize}
\end{frame}
\begin{frame}{Adaptive Seeding}
\begin{itemize}
\item \textbf{First stage:} select $S\subseteq X$ ($|S|\leq k$)
\vspace{1em}
\pause
\item each node $u\in N(S)$ becomes seedable w.p $p_u$
\\$\Rightarrow$ $R\subseteq N(S)$ subset of seedable nodes
\vspace{1em}
\pause
\item \textbf{Second stage:} maximize $f$ over $R$ with remaining budget ($k-|S|$)
\end{itemize}
\end{frame}
\begin{frame}{Problem}
\begin{itemize}
\item \textbf{First stage:} select $S\subseteq X$ ($|S|\leq k$)
\vspace{1em}
\pause
\item $p_R$ probability that $R\subseteq N(S)$ becomes seedable:
\vspace{1em}
\pause
\item expected value when selecting $S$ ($|S|\leq k$):
\begin{displaymath}
F(S) = \sum_{R\subseteq N(S)} p_R\; \max_{\substack{T\subseteq R\\ |T|\leq k-|S|}} f(T)
\end{displaymath}
\end{itemize}
\vspace{2em}
\alert{Problem:} Compute $F^* \in \argmax_{|S|\leq k} F(S)$
\end{frame}
\begin{frame}{Problem}
\begin{displaymath}
F(S) = \sum_{R\subseteq N(S)} p_R\; \max_{\substack{T\subseteq R\\ |T|\leq k-|S|}} f(T)
\end{displaymath}
\vspace{1cm}
\alert{Problem:} Compute $F^* \in \argmax_{|S|\leq k} F(S)$
\vspace{1cm}
Even when the probabilities are all one:
\begin{itemize}
\item NP-hard problem
\item not submodular
\item computing $F(S)$ takes exponential time
\end{itemize}
\vspace{1em}
\pause
However, $(1-1/e)^2$-approx. algorithm [SS13,\ldots]
\pause
\vspace{1em}
But\ldots{} running time $O(n^\alpha)$, $\alpha \geq 10$.
\end{frame}
\begin{frame}{Non-adaptive relaxation}
\begin{itemize}
\item commit in the first stage on the nodes to seed in the second stage
\item randomize
\end{itemize}
\vspace{1em}
\pause
A non-adaptive solution is a pair $(S, q)$
\begin{itemize}
\item $S$: nodes selected in the first stage
\item $q$: if node $u\in N(S)$ realizes, select it w.p $q_u$
\end{itemize}
\vspace{1em}
\pause
Within budget in expectation:
\begin{displaymath}
|S| + \sum_{u\in N(S)} p_u q_u\leq k
\end{displaymath}
\end{frame}
\begin{frame}{Non-adaptive problem}
\begin{displaymath}
\begin{split}
\max_{(S,q)}& \sum_{R\subseteq N(S)} (p\cdot q)_R \;f(R)\\
\text{s.t.}&\; |S| + \sum_{u\in N(S)} p_uq_u \leq k
\end{split}
\end{displaymath}
\pause
\vspace{1cm}
Non-adaptive problem:
\begin{itemize}
\item $(1-1/e)$ approx. to the adaptive problem
\item can be solved with approximation $(1-1/e)$
\pause
\item how to construct adaptive solution from non-adaptive solution?
\begin{displaymath}
(S,q) \mapsto S
\end{displaymath}
\end{itemize}
\end{frame}
\begin{frame}{Non-adaptive relaxation}
\begin{center}
\includegraphics[height=0.5\textheight]{diag.pdf}
\end{center}
\end{frame}
\section{Additive Adaptive Seeding}
\begin{frame}{Additive influence functions}
From now on:
\begin{displaymath}
f(S) = \sum_{u\in S} w_u
\end{displaymath}
\vspace{1cm}
$w_u$ is the weight of node $u$:
\begin{itemize}
\item $w_u = \text{deg}(u)$
\item $w_u$, influence of $u$ in the voter model
\item $w_u$ comes from an external source (e.g. Klout)
\end{itemize}
\end{frame}
\begin{frame}{Results}
\begin{center}
\includegraphics<1>[height=0.5\textheight]{diag.pdf}
\includegraphics<2>[height=0.5\textheight]{diag2.pdf}
\end{center}
\end{frame}
\begin{frame}{Non-adaptive Problem (bis)}
\only<1>{
\begin{displaymath}
\begin{split}
\max_{(S,q)}& \sum_{R\subseteq N(S)} (p\cdot q)_R \;f(R)\\
\text{s.t.}&\; |S| + \sum_{u\in N(S)} p_uq_u \leq k
\end{split}
}
\only<2->{
\begin{displaymath}
\begin{split}
\max_{(S,q)}& \sum_{u\in N(S)} p_uq_uw_u\\
\text{s.t.}&\; |S| + \sum_{u\in N(S)} p_uq_u \leq k
\end{split}
}
\end{displaymath}
\pause
\pause
\vspace{1em}
Two algorithms
\begin{itemize}
\item submodular maximization: $\max_q \sum_{u\in N(S)} p_uq_uw_u$ is submodular
\item LP relaxation
\end{itemize}
\pause
\vspace{1em}
Running time: $O(k^2 n^2)$.
\end{frame}
\section{Experimental Results}
\begin{frame}{Data Collection}
\begin{table}[t]
\centering
\setlength{\tabcolsep}{3pt}
\begin{tabular}{llrr}
\toprule
Vertical & Page & $m$ & $n$ \\%& $S$ & $F$\\
\midrule
Charity & Kiva & 978 & 131334 \\%& 134.29 & 1036.26\\
Travel & Lonely Planet & 753 & 113250 \\%& 150.40 & 898.50\\
%Public Action & LaManifPourTous & 1041 & 97959 \\%& 94.10 & 722.02\\
Fashion & GAP & 996 & 115524 \\%& 115.99 & 681.98\\
Events & Coachella & 826 & 102291 \\%& 123.84 & 870.16\\
Politics & Green Party & 1044 & 83490 \\%& 79.97 & 1053.25\\
Technology & Google Nexus & 895 & 137995 \\%& 154.19 & 827.84\\
News & The New York Times & 894 & 156222 \\%& 174.74 & 1033.94 \\
%Consumption & Peet's & 776 & 56268 \\%& 72.51 & 520.47\\
Entertainment & HBO & 828 & 108699 \\%& 131.28 & 924.09\\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}{Friendship paradox (bis)}
\begin{center}
\includegraphics[width=0.8\textwidth]{para.pdf}
\end{center}
\end{frame}
\begin{frame}{Performance}
\begin{center}
\includegraphics[height=0.8\textheight]{perf10.pdf}
\end{center}
\end{frame}
\begin{frame}{Performance (bis)}
\begin{figure}[t]
\begin{subfigure}[t]{0.48\textwidth}
\includegraphics[width=\textwidth]{prob.pdf}
\caption{}
\end{subfigure}
\hspace{1pt}
\begin{subfigure}[t]{0.48\textwidth}
\includegraphics[width=\textwidth]{hbo_likes.pdf}
\caption{}
\end{subfigure}
\end{figure}
\end{frame}
\begin{frame}{Running time}
\begin{center}
\includegraphics[width=\textwidth]{sampling2.pdf}
\end{center}
\end{frame}
\end{document}
|