diff options
| author | Jon Whiteaker <jbw@jon-th-desktop.(none)> | 2012-02-24 01:27:40 -0800 |
|---|---|---|
| committer | Jon Whiteaker <jbw@jon-th-desktop.(none)> | 2012-02-24 01:27:40 -0800 |
| commit | 197be2fa794453a7e24aaa5d9ee0217fe0fbb735 (patch) | |
| tree | e192a130386fb98b72caab98e22665c90526f7ea /data/class.py | |
| parent | 474b2518d605b8a9ca47bbec79ec737802b9a742 (diff) | |
| parent | 5ae9358487b6266d2a221ebc2bcf72d735e09b25 (diff) | |
| download | kinect-197be2fa794453a7e24aaa5d9ee0217fe0fbb735.tar.gz | |
Merge branch 'master' of paloalto.thlab.net:kinect-eccv12
Diffstat (limited to 'data/class.py')
| -rwxr-xr-x | data/class.py | 70 |
1 files changed, 0 insertions, 70 deletions
diff --git a/data/class.py b/data/class.py deleted file mode 100755 index e7975f9..0000000 --- a/data/class.py +++ /dev/null @@ -1,70 +0,0 @@ -#! /usr/bin/python -import copy -import sys -from svmutil import * - -lower = 0.1 -upper = 10 - -def normalize_instances(instances, ranges = None) : - normalized_instances = copy.deepcopy(instances) - if ranges == None : - ranges_dict = dict() - for attribute in normalized_instances[0].keys() : # we iterate on the attributes - column = [instance[attribute] for instance in normalized_instances] - if ranges != None : - minimum = ranges[attribute][0] - maximum = ranges[attribute][1] - else : - minimum = min(column) - maximum = max(column) - ranges_dict[attribute] = [minimum, maximum] - for i in range(len(column)) : - if column[i] == minimum : - column[i] = lower - elif column[i] == maximum : - column[i] = upper - else : - column[i] = lower + (upper-lower) * (column[i] - minimum) / (maximum - minimum) - # Copying normalized values in memory - - for elem, instance in zip(column, normalized_instances): - instance[attribute] = elem - - if ranges == None : - return normalized_instances, ranges_dict - else : - return normalized_instances - - -def read_file(filename) : - y = [] - x = [] - for line in filename: - values = line.rstrip().split(',') - if values[0] != "# dir": - dict = {} - for i in range(9): - if float(values[i+5])!=-1.: - dict[i+1] = float(values[i+5]) - if len(dict)==9: - y += [int(values[1])] - x += [dict] - print line.rstrip() - #for a,b in zip(y,x): - # result = str(a) - # for i in range(9): - # result += " "+str(i+1)+":"+str(b[i+1]) - # print result - #return (y,x) - -train_filename = sys.argv[1] -#test_filename = sys.argv[2] -y1,x1 = read_file(open(train_filename)) -#x1,ranges = normalize_instances(x1) -#print ranges -#exit(0) -#model = svm_train(y1,x1) -#y2,x2 = read_file(open(test_filename)) -#x2 = normalize_instances(x2,ranges) -#p_labels,p_acc,p_vals = svm_predict(y2,x2,model) |
