summaryrefslogtreecommitdiffstats
path: root/data/class.py
diff options
context:
space:
mode:
Diffstat (limited to 'data/class.py')
-rwxr-xr-xdata/class.py70
1 files changed, 0 insertions, 70 deletions
diff --git a/data/class.py b/data/class.py
deleted file mode 100755
index e7975f9..0000000
--- a/data/class.py
+++ /dev/null
@@ -1,70 +0,0 @@
-#! /usr/bin/python
-import copy
-import sys
-from svmutil import *
-
-lower = 0.1
-upper = 10
-
-def normalize_instances(instances, ranges = None) :
- normalized_instances = copy.deepcopy(instances)
- if ranges == None :
- ranges_dict = dict()
- for attribute in normalized_instances[0].keys() : # we iterate on the attributes
- column = [instance[attribute] for instance in normalized_instances]
- if ranges != None :
- minimum = ranges[attribute][0]
- maximum = ranges[attribute][1]
- else :
- minimum = min(column)
- maximum = max(column)
- ranges_dict[attribute] = [minimum, maximum]
- for i in range(len(column)) :
- if column[i] == minimum :
- column[i] = lower
- elif column[i] == maximum :
- column[i] = upper
- else :
- column[i] = lower + (upper-lower) * (column[i] - minimum) / (maximum - minimum)
- # Copying normalized values in memory
-
- for elem, instance in zip(column, normalized_instances):
- instance[attribute] = elem
-
- if ranges == None :
- return normalized_instances, ranges_dict
- else :
- return normalized_instances
-
-
-def read_file(filename) :
- y = []
- x = []
- for line in filename:
- values = line.rstrip().split(',')
- if values[0] != "# dir":
- dict = {}
- for i in range(9):
- if float(values[i+5])!=-1.:
- dict[i+1] = float(values[i+5])
- if len(dict)==9:
- y += [int(values[1])]
- x += [dict]
- print line.rstrip()
- #for a,b in zip(y,x):
- # result = str(a)
- # for i in range(9):
- # result += " "+str(i+1)+":"+str(b[i+1])
- # print result
- #return (y,x)
-
-train_filename = sys.argv[1]
-#test_filename = sys.argv[2]
-y1,x1 = read_file(open(train_filename))
-#x1,ranges = normalize_instances(x1)
-#print ranges
-#exit(0)
-#model = svm_train(y1,x1)
-#y2,x2 = read_file(open(test_filename))
-#x2 = normalize_instances(x2,ranges)
-#p_labels,p_acc,p_vals = svm_predict(y2,x2,model)