1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
mostFreqClasses = str2double(argv(){4});
numEx = 10;
% scenario = 'off';
% solver = 'SHT';
scenario = argv(){3};
solver = argv(){2};
% load data
% trainD = dlmread('train_limbs.csv', ',', 1, 0);
% testD = dlmread('test_limbs.csv', ',', 1, 0);
% D = [trainD; testD];
D = dlmread(argv(){1}, ',', 1, 0);
X = D(:, 8 : end);
y = D(:, 2);
session = D(:, 2);
z = D(:, 5);
% remove missing values and outliers
active = all(X ~= -1, 2);
active = active & (z > 2) & (z < 3);
% remove least frequent classes
tab = tabulate(y);
[nil, delc] = sort(tab(:, 2), 'descend');
delc = delc(mostFreqClasses + 1 : end);
for c = delc'
active(y == c) = false;
end
% update data
X = X(active, :);
y = y(active);
session = session(active);
z = z(active);
numClasses = max(y);
N = size(X, 1);
K = size(X, 2);
% normalization
X = zscore(X);
% training and testing splits
splits = [1; find(session(1 : end - 1) ~= session(2 : end)) + 1; N + 1];
ns = length(splits) - 1;
splits
trains = cell(1, numEx);
tests = cell(1, numEx);
for ex = 1 : numEx
switch (scenario)
case 'off'
% offline learning (cross-validation)
test = splits(round(ns * (ex - 1) / numEx) + 1) : ...
splits(round(ns * ex / numEx) + 1) - 1;
train = setdiff(1 : N, test);
case 'on'
% online learning
train = 1 : splits(round(ns * ex / (numEx + 1)) + 1) - 1;
test = splits(round(ns * ex / (numEx + 1)) + 1) : ...
splits(round(ns * (ex + 1) / (numEx + 1)) + 1) - 1;
end
trains{ex} = train;
tests{ex} = test;
end
prec = zeros(numEx, 0);
recall = zeros(numEx, 0);
for ex = 1 : numEx
train = trains{ex};
test = tests{ex};
% NB classifier with multivariate Gaussians
Py = zeros(numClasses, 1);
Pxy = zeros(numClasses, K);
Sigma = zeros(K, K);
for c = 1 : numClasses
sub = train(y(train) == c);
if (~isempty(sub))
Py(c) = length(sub) / length(train);
Pxy(c, :) = mean(X(sub, :), 1);
Sigma = Sigma + Py(c) * cov(X(sub, :));
end
end
switch (solver)
case 'NB'
% NB inference
logp = repmat(log(Py)', N, 1);
for c = 1 : numClasses
if (Py(c) > 0)
logp(:, c) = log(Py(c)) + log(mvnpdf(X, Pxy(c, :), Sigma));
end
end
case 'SHT'
% sequential hypothesis testing
logp = zeros(N, numClasses);
for c = 1 : numClasses
if (Py(c) > 0)
logp(:, c) = log(mvnpdf(X, Pxy(c, :), Sigma));
end
end
nhyp = zeros(N, 1);
for i = 1 : N
if ((i == 1) || (session(i - 1) ~= session(i)))
logp(i, :) = logp(i, :) + log(Py');
nhyp(i) = 2;
else
logp(i, :) = logp(i, :) + logp(i - 1, :);
nhyp(i) = nhyp(i - 1) + 1;
end
end
end
% prediction
[conf, yp] = max(logp, [], 2);
% sum up all but the highest probability
norm1 = logp - repmat(conf, 1, numClasses);
norm1((1 : N) + (yp' - 1) * N) = -Inf;
norm1 = log(sum(exp(norm1), 2));
% evaluation
for i = 1 : 1000
th = 3 - i/10;
sub = test(norm1(test) < th);
%th = i/1000
%sub = test(exp(conf(test)) > th);
prec(ex, i) = mean(y(sub) == yp(sub));
recall(ex, i) = length(sub) / length(test);
end
end
prec(isnan(prec)) = 1;
hold on;
plot(100 * mean(recall), 100 * mean(prec), '-', ...
'LineWidth', 1, 'MarkerSize', 4, 'MarkerFaceColor', 'w');
xlabel('Recall [%]');
ylabel('Precision [%]');
hold off;
pause
pr = [mean(recall)',mean(prec)'];
save pr.mat pr;
% A = X - Pxy(y, :);
% for k = 1 : 9
% subplot(3, 3, k);
% hist(A(:, k), -5 : 0.1 : 5);
% h = findobj(gca, 'Type', 'patch');
% set(h, 'FaceColor', [0.5, 1, 0.5], 'LineStyle', 'none')
% axis([-5, 5, 0, Inf]);
% title(sprintf('X_%i', k));
% end
|