1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
mostFreqClasses = 100;
numEx = 1;
scenario = 'off';
solver = argv(){3};
% load data
trainD = dlmread(argv(){1}, ',', 1, 0);
testD = dlmread(argv(){2}, ',', 1, 0);
D = [trainD; testD];
X = D(:, 6 : end);
y = D(:, 2);
session = D(:, 2);
z = D(:, 5);
% remove missing values and outliers
active = all(X ~= -1, 2);
active = active & (z > 2) & (z < 3);
% remove least frequent classes
tab = tabulate(y);
[nil, delc] = sort(tab(:, 2), 'descend');
delc = delc(mostFreqClasses + 1 : end);
for c = delc'
active(y == c) = false;
end
% update data
X = X(active, :);
y = y(active);
session = session(active);
z = z(active);
numClasses = max(y);
N = size(X, 1);
K = size(X, 2);
% normalization
X = zscore(X);
train = 1 : sum(active(1 : size(trainD, 1)));
test = train(end) + 1 : N;
prec = zeros(numEx, 0);
recall = zeros(numEx, 0);
for ex = 1 : numEx
% NB classifier with multivariate Gaussians
Py = zeros(numClasses, 1);
Pxy = zeros(numClasses, K);
Sigma = zeros(K, K);
for c = 1 : numClasses
sub = train(y(train) == c);
if (~isempty(sub))
Py(c) = length(sub) / length(train);
Pxy(c, :) = mean(X(sub, :), 1);
Sigma = Sigma + Py(c) * cov(X(sub, :));
end
end
switch (solver)
case 'NB'
% NB inference
logp = repmat(log(Py)', N, 1);
for c = 1 : numClasses
if (Py(c) > 0)
logp(:, c) = log(Py(c)) + log(mvnpdf(X, Pxy(c, :), Sigma));
end
end
case 'SHT'
% sequential hypothesis testing
logp = zeros(N, numClasses);
for c = 1 : numClasses
if (Py(c) > 0)
logp(:, c) = log(mvnpdf(X, Pxy(c, :), Sigma));
end
end
nhyp = zeros(N, 1);
for i = 1 : N
if ((i == 1) || (session(i - 1) ~= session(i)))
logp(i, :) = logp(i, :) + log(Py');
nhyp(i) = 2;
else
logp(i, :) = logp(i, :) + logp(i - 1, :);
nhyp(i) = nhyp(i - 1) + 1;
end
end
end
% prediction
[conf, yp] = max(logp, [], 2);
% sum up all but the highest probability
norm1 = logp - repmat(conf, 1, numClasses);
norm1((1 : N) + (yp' - 1) * N) = -Inf;
norm1 = log(sum(exp(norm1), 2));
% evaluation
for i = 1 : 1000
th = 3 - i;
sub = test(norm1(test) < th);
prec(ex, i) = mean(y(sub) == yp(sub));
recall(ex, i) = length(sub) / length(test);
end
end
prec(isnan(prec)) = 1;
hold on;
plot(100 * recall, 100 * prec, '-', ...
'LineWidth', 1, 'MarkerSize', 4, 'MarkerFaceColor', 'w');
xlabel('Recall [%]');
ylabel('Precision [%]');
hold off;
pause
pr = [recall',prec'];
save pr.mat pr;
% figure;
% A = X - Pxy(y, :);
% for k = 1 : 9
% subplot(2, 5, k);
% hist(A(:, k), -5 : 0.1 : 5);
% h = findobj(gca, 'Type', 'patch');
% set(h, 'FaceColor', [0.5, 1, 0.5], 'LineStyle', 'none')
% axis([-3, 3, 0, Inf]);
% xlabel(sprintf('x_%i - E[x_%i | y]', k, k));
% set(gca, 'XTick', []);
% ylabel(sprintf('P(x_%i - E[x_%i | y])', k, k));
% set(gca, 'YTick', []);
% end
|