summaryrefslogtreecommitdiffstats
path: root/data/combined/scriptSkeletonFixedSplit.m
blob: 9430dc848332fcb94a1ec82f5613101153913bce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
mostFreqClasses = 100;
numEx = 1;
scenario = 'off';
solver = argv(){3};

% load data
trainD = dlmread(argv(){1}, ',', 1, 0);
testD = dlmread(argv(){2}, ',', 1, 0);
D = [trainD; testD];
X = D(:, 6 : end);
y = D(:, 2);
session = D(:, 2);
z = D(:, 5);

% remove missing values and outliers
active = all(X ~= -1, 2);
active = active & (z > 2) & (z < 3);

% remove least frequent classes
tab = tabulate(y);
[nil, delc] = sort(tab(:, 2), 'descend');
delc = delc(mostFreqClasses + 1 : end);
for c = delc'
  active(y == c) = false;
end

% update data
X = X(active, :);
y = y(active);
session = session(active);
z = z(active);
numClasses = max(y);
N = size(X, 1);
K = size(X, 2);

% normalization
X = zscore(X);

train = 1 : sum(active(1 : size(trainD, 1)));
test = train(end) + 1 : N;

prec = zeros(numEx, 0);
recall = zeros(numEx, 0);
for ex = 1 : numEx
  % NB classifier with multivariate Gaussians
  Py = zeros(numClasses, 1);
  Pxy = zeros(numClasses, K);
  Sigma = zeros(K, K);
  for c = 1 : numClasses
    sub = train(y(train) == c);
    if (~isempty(sub))
      Py(c) = length(sub) / length(train);
      Pxy(c, :) = mean(X(sub, :), 1);
      Sigma = Sigma + Py(c) * cov(X(sub, :));
    end
  end
  
  switch (solver)
    case 'NB'
      % NB inference
      logp = repmat(log(Py)', N, 1);
      for c = 1 : numClasses
        if (Py(c) > 0)
          logp(:, c) = log(Py(c)) + log(mvnpdf(X, Pxy(c, :), Sigma));
        end
      end

    case 'SHT'
      % sequential hypothesis testing
      logp = zeros(N, numClasses);
      for c = 1 : numClasses
        if (Py(c) > 0)
          logp(:, c) = log(mvnpdf(X, Pxy(c, :), Sigma));
        end
      end

      nhyp = zeros(N, 1);
      for i = 1 : N
        if ((i == 1) || (session(i - 1) ~= session(i)))
          logp(i, :) = logp(i, :) + log(Py');
          nhyp(i) = 2;
        else
          logp(i, :) = logp(i, :) + logp(i - 1, :);
          nhyp(i) = nhyp(i - 1) + 1;
        end
      end
  end
  
  % prediction
  [conf, yp] = max(logp, [], 2);
  
  % sum up all but the highest probability
  norm1 = logp - repmat(conf, 1, numClasses);
  norm1((1 : N) + (yp' - 1) * N) = -Inf;
  norm1 = log(sum(exp(norm1), 2));
  
  % evaluation
  for i = 1 : 1000
    th = 3 - i;
    sub = test(norm1(test) < th);
    prec(ex, i) = mean(y(sub) == yp(sub));
    recall(ex, i) = length(sub) / length(test);
  end
end
prec(isnan(prec)) = 1;

hold on;
plot(100 * recall, 100 * prec, '-', ...
  'LineWidth', 1, 'MarkerSize', 4, 'MarkerFaceColor', 'w');
xlabel('Recall [%]');
ylabel('Precision [%]');
hold off;
pause
pr = [recall',prec'];
save pr.mat pr;

% figure;
% A = X - Pxy(y, :);
% for k = 1 : 9
%   subplot(2, 5, k);
%   hist(A(:, k), -5 : 0.1 : 5);
%   h = findobj(gca, 'Type', 'patch');
%   set(h, 'FaceColor', [0.5, 1, 0.5], 'LineStyle', 'none')
%   axis([-3, 3, 0, Inf]);
%   xlabel(sprintf('x_%i - E[x_%i | y]', k, k));
%   set(gca, 'XTick', []);
%   ylabel(sprintf('P(x_%i - E[x_%i | y])', k, k));
%   set(gca, 'YTick', []);
% end