summaryrefslogtreecommitdiffstats
path: root/data/face-frame-recognition-accuracy.py
blob: d32af9fad6fb2b97b968552ea4762d67d7486cc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/python
import numpy as np
import os
import sys
import pickle
import math

prun = 0
runs = {}
labels = {}
users = pickle.load((open(sys.argv[3])))
recs = map(lambda x:0,users)
conf = {}
thresh = 0.0
try:
    thresh = float(sys.argv[4])
except:
    pass

for line in open(sys.argv[1]):
    line = line.split(',')
    try:
        run = int(line[3])
    except:
        continue
    user = line[1]
    if run not in labels:
        #runs[run] = 0
        labels[run] = users.index(user) + 1

for line in open(sys.argv[2]):
    line = line.split(',')
    try:
        run = int(line[3])
    except:
        continue
    user = line[1]
    rec = ' '.join(line[6].split('@')[0].split('_'))
    if run != prun and prun > 0:
        runs[prun] = recs.index(max(recs))+1
        recs = map(lambda x:0,users)
    recs[users.index(rec)] += 1
    maxc = float(line[7])
    i = 9
    cvec = [maxc]
    while i < len(line):
        cvec += [float(line[i])]
        i += 2
    conf[run] = (maxc/100.0)*(maxc/(np.sum(cvec)))
    prun = run

for i in range(999)+list(np.arange(999,1000,0.01)):
    thresh = i/1000.0
    t=0.0
    tp=0.0
    fp=0.0
    fn=0.0
    for (k,v) in runs.items():
        #print v,labels[k]
        if conf[k] < thresh:
            fn += 1
        elif v != labels[k]:
            fp += 1
        else:
            tp += 1
        t += 1
    #print runs[167],labels[167]
    #print tp,fp,fn
    #print("Precision: ",tp/(tp+fp))
    #print("False positives: ",fp/(tp+fp))
    #print("Recall: ",1.0-fn/t)
    try:
        print str(1.0-fn/t)+","+str(tp/(tp+fp))
    except:
        print "0,1"