aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2015-03-20 17:03:50 -0400
committerThibaut Horel <thibaut.horel@gmail.com>2015-03-20 17:03:50 -0400
commite62db6b69cdbbe37825f060eec98f600282b4118 (patch)
tree5e7693a677e79f2f248ebdd7d22387b40323dd33
parentae3e6b98a5cbe869603543e33cfc51e535d1029f (diff)
downloadlearn-optimize-e62db6b69cdbbe37825f060eec98f600282b4118.tar.gz
Add comment on parametric functions
-rw-r--r--results.tex6
1 files changed, 6 insertions, 0 deletions
diff --git a/results.tex b/results.tex
index f4cea1a..41452ad 100644
--- a/results.tex
+++ b/results.tex
@@ -272,6 +272,12 @@ By using standard concentration bounds, we can hope to obtain within $poly(n, \f
\subsection{Parametric submodular functions}
+\textbf{Note:} all known examples of submodular functions are parametric. The
+question is not parametric vs non-parametric but whether or not the number of
+parameters is polynomial or exponential in $n$ (the size of the ground set).
+For all examples I know except martroid rank functions, it seems to be
+polynomial.
+
\subsubsection{Influence Functions}
Let $G = (V, E)$ be a weighted directed graph. Without loss of generality, we