diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-03-20 15:50:44 -0400 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-03-20 15:50:44 -0400 |
| commit | ae3e6b98a5cbe869603543e33cfc51e535d1029f (patch) | |
| tree | fe237f7b2d121cb999e69d52b3c6235741cdfdbf /results.tex | |
| parent | 088db2ca454dcd3123dac4f75f4adbafb6fffaed (diff) | |
| download | learn-optimize-ae3e6b98a5cbe869603543e33cfc51e535d1029f.tar.gz | |
cleaning up more stuff
Diffstat (limited to 'results.tex')
| -rw-r--r-- | results.tex | 20 |
1 files changed, 18 insertions, 2 deletions
diff --git a/results.tex b/results.tex index f90c72f..f4cea1a 100644 --- a/results.tex +++ b/results.tex @@ -203,9 +203,25 @@ $D-$learning $f$ approximately. Note that for every element $i \in \Omega$, and for a \emph{product} distribution $D$: \begin{displaymath} \mathbb{E}_{S \sim D}(f(S)|i \in S) - \mathbb{E}_{S \sim D}(f(S) | i \notin - S) = w_i + S) = \sum_{j \neq i \in \Omega} w_s \left(\mathbb{P}(j\in S|i \in S) - + \mathbb{P}(j \in S | i \notin S)\right) + w_i(1 - 0) = w_i \end{displaymath} +Let $O$ be the collection of all sets $S$ for which we have observed $f(S)$ and +let $O_i \equiv \{S \in O : i \in S\}$ and $O^c_i \equiv \{ S\in O: i \notin S +\}$. If $O_i$ and $O^c_i$ are non-empty, define the following weight estimator: +\begin{displaymath} + \hat W_i \equiv \frac{1}{|O_i|} \sum_{S \in O_i} f(S) - \frac{1}{|O_i^c|} + \sum_{S \in O_i^c} f(S) +\end{displaymath} + +If $D$ is a product distribution such that $ \exists c > 0, \forall i, +\mathbb{P}(i) \geq c$, it is +easy to show that $\forall i \in +\Omega,\ \hat W_i \rightarrow_{|O| \rightarrow +\infty} w_i$ +By using standard concentration bounds, we can hope to obtain within $poly(n, \frac{1}{\epsilon})$ observations: + + %For every node %$i$, we compute the \emph{average weight of every set containing element $i$}. Let $w_i$ be %the weight of element $i$, $w \equiv f(\Omega) = \sum_{i \in \Omega} w_i$ and @@ -262,7 +278,7 @@ Let $G = (V, E)$ be a weighted directed graph. Without loss of generality, we can assign a weight $p_{u,v} \in [0,1]$ to every possible edge $(u,v) \in V^2$. Let $m$ be the number of non-zero edges of $G$. Let $\sigma_G(S, p)$ be the influence of the set $S \subseteq V$ in $G$ under the IC model with parameters -$p$. +$p$. Recall from \cite{Kempe:03} that: \begin{equation} |
