aboutsummaryrefslogtreecommitdiffstats
path: root/greedy/main.tex
blob: e8fe3094c406588d00e32fee7367964d2d2b9cc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
\documentclass[10pt, twocolumn]{article}
\usepackage[hmargin=3em,vmargin=3em, bmargin=5em,footskip=3em]{geometry}
\usepackage[sectionbib]{natbib}
\usepackage[pagebackref=false,breaklinks=true,colorlinks=true,citecolor=blue]{hyperref}
\usepackage[utf8x]{inputenc}
\usepackage{times}
\usepackage{amsmath,amsfonts,amsthm}
\usepackage[english]{babel}
\usepackage[capitalize, noabbrev]{cleveref}
\usepackage{algorithm}
\usepackage{algpseudocode}
\usepackage{microtype}
\setlength{\columnsep}{2em}

\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator{\E}{\mathbb{E}}
\let\P\relax
\DeclareMathOperator{\P}{\mathbb{P}}
\newcommand{\ex}[1]{\E\left[#1\right]}
\newcommand{\prob}[1]{\P\left[#1\right]}
\newcommand{\inprod}[1]{\left\langle #1 \right\rangle}
\newcommand{\R}{\mathbf{R}}
\newcommand{\N}{\mathbf{N}}
\newcommand{\C}{\mathcal{C}}
\newcommand{\eps}{\varepsilon}
\newcommand{\cl}[1]{\text{\textbf{#1}}}
\newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}}

\newtheorem{theorem}{Theorem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\theoremstyle{remark}
\newtheorem*{example}{Example}
\newtheorem*{remark}{Remark}

\algrenewcommand\algorithmicensure{\textbf{Output:}}
\algrenewcommand\algorithmicrequire{\textbf{Input:}}

\author{Thibaut Horel}
\title{Notes on Greedy Algorithms for Submodular Maximization}

\begin{document}
\maketitle

\section{Submodular Functions}

All the functions we consider are set functions defined over subsets of
a ground set $N$.

\begin{definition}
    A function $f:2^N\to\R$ is \emph{monotone} iff:
    \begin{displaymath}
        \forall S\subseteq T\subseteq N,\; f(S)\leq f(T)
    \end{displaymath}
\end{definition}

\begin{definition}
    For $f:2^N\to\R$ and $S\subseteq N$, the \emph{marginal
    contribution} to $S$ is the function $f_S$ defined by:
\begin{displaymath}
    \forall T\subseteq N,\; f_S(T) = f(S\cup T) - f(S)
\end{displaymath}
\end{definition}

When there is no ambiguity, we write $f_S(e)$ instead of $f_S(\{e\})$ for $e\in
N$, $S+e$ instead of $S\cup\{e\}$ and $S-e$ instead of $S\setminus\{e\}$.

\begin{definition}
    \label{def:sub}
    A function $f:2^N\to\R$ is \emph{submodular} iff:
\begin{displaymath}
    \forall S\subseteq T\subseteq N,\forall e\in N\setminus T,\;
    f_T(e)\leq f_S(e)
\end{displaymath}
\end{definition}

This ``decreasing marginal contribution'' definition of submodular functions
often leads to treating them as ``discrete concave functions''.

\begin{proposition}
    \label{prop:subeq}
    The following statements are equivalent:
    \begin{enumerate}
        \item $f$ is submodular.
        \item for all $S\subseteq N$, $f_S$ is submodular.
        \item for all $S\subseteq N$, $f_S$ is subadditive.
    \end{enumerate}
\end{proposition}

\begin{proof}
    (\emph{1. $\Rightarrow$ 2.}) is immediate. To prove (\emph{2. $\Rightarrow$
    3.}), we show that any submodular function $f$ is subadditive. Let $f$ be
      a submodular function. Consider $A$ and $B$ two subets of $N$. Writing $B
      = \{e_1,\dots,e_n\}$ and $B_i = \{e_1,\ldots,e_i\}$:
      \begin{align*}
          f(A\cup B) &= f(A) + \sum_{i=1}^n f(A\cup B_i) - f(A\cup B_{i-1})\\
                     &\leq f(A) + \sum_{i=1}^n f(B_i) - f(B_{i-1}) = f(A)
          + f(B)
        \end{align*}
    where the inequality uses the submodularity of $f$.

    Finally, we prove (\emph{3. $\Rightarrow$ 1.}). Let $f$ be a function
    satisfying \emph{3.}, and let us consider $S\subseteq T\subseteq N$ and
    $e\in N\setminus T$. Writing $T' = T\setminus S$:
    \begin{align*}
        f_T(e) &= f_S(T'+e) - f_S(T')\\
                   &\leq f_S(T') + f_S(e) - f_S(T') = f_S(e)
    \end{align*}
    where the inequality used that $f_S$ is subadditive.
\end{proof} 

\begin{remark}
    \cref{prop:subeq} implies in particular that a submodular function is
    subadditive.
\end{remark}

The following \lcnamecref{cor:sa} will be very useful in analysing greedy
algorithms involving submodular functions.  It can be seen as the
``integrated'' version of \cref{def:sub}\footnote{Note the analogy to
$f(b)\leq f(a) + (b-a)f'(a)$, for $f$ concave.}.

\begin{corollary}
    \label{cor:sa}
Let $f$ be a submodular function, then:
\begin{displaymath}
    \forall S\subseteq T\subseteq N,\;
    f(T)\leq f(S) + \sum_{e\in T\setminus S} f_S(e)
\end{displaymath}
Furthermore, if $f$ is monotone submodular, $S$ need not be a subset of $T$:
\begin{displaymath}
    \forall S\subseteq N,\, T\subseteq N,\;
    f(T)\leq f(S) + \sum_{e\in T\setminus S} f_S(e)
\end{displaymath}
\end{corollary}

\begin{proof}
If $f$ is submodular, using that $f_S$ is subadditive:
\begin{displaymath}
    f_S(T) = f_S(T\setminus S)\leq \sum_{e\in T\setminus S} f_S(e)
\end{displaymath}
which proves the first part of the corollary.

If $f$ is monotone submodular, $f(T)\leq f(S\cup T)$ and applying the first
part of the corollary to $S\cup T$ and $T$ concludes the proof.
\end{proof}

\begin{remark}
    The two inequalities of \cref{cor:sa} can be proved to be respectively
    equivalent to ``$f$ is submodular'' and ``$f$ is monotone submodular''.
\end{remark}

\section{Cardinality Constraint}

Henceforth, $f$ will be a monotone submodular function. Furthermore, we 
assume that $f$ is \emph{normalized}, that is, $f(\emptyset) = 0$. Consider
the following maximization program:
\begin{displaymath}
    S^*\in\argmax_{S\,:\, |S|\leq K} f(S)
\end{displaymath}

The choice of a representation for $f$ has a big impact on the computational
nature of the above program. We assume the \emph{value query model}: for any
$S\subseteq N$, the algorithm can query a black-box oracle for the value
$f(S)$. An algorithm making $O\big(\text{poly}(|N|)\big)$ queries to the oracle
is considered to have polynomial running time.

\begin{algorithm}
    \caption{Greedy (Cardinality constraint)}
    \label{alg:gc}
    \begin{algorithmic}[1]
        \Require $N$, $K$, value query oracle for $f$
        \State $S_G \gets \emptyset$
        \While{$|S_G| < K$}
        \State $x^*\gets \argmax_{x\in N} f_{S_G}(x)$
        \State $S_G \gets S_G + x^*$\label{line:add1}
            \State $N\gets N - x^*$
        \EndWhile
        \State\textbf{return} $S_G$
    \end{algorithmic}
\end{algorithm}

\begin{proposition}
    Let $S_G$ be the set returned by Algorithm~\ref{alg:gc}, then
    $f(S_G)\geq\big(1-\frac{1}{e}\big) f(S^*)$.
\end{proposition}

\begin{proof}
    Let us denote by $S_i = \{e_1,\dots, e_i\}$, the value of $S_G$ after the
    $i$th time line~\ref{line:add1} of Algorithm~\ref{alg:gc} is executed.
    Then:
    \begin{align*}
        f(S^*)&\leq f(S_{i-1})
        + \sum_{e\in S^*\setminus S_{i-1}} f_{S_{i-1}}(e)\\
        &\leq f(S_{i-1})
        + \sum_{e\in S^*\setminus S_{i-1}} f(S_i) - f(S_{i-1})\\
        &\leq f(S_{i-1}) + K\big(f(S_i) - f(S_{i-1})\big)
    \end{align*}
    where the first inequality used \cref{cor:sa}, the second inequality used
    the greediness of Algorithm~\ref{alg:gc} and the third inequality used that
    $|S^*|\leq K$.

    Subtracting $K\cdot f(S^*)$ both sides gives:
    \begin{displaymath}
        f(S_i) - f(S^*)\geq \frac{K-1}{K} \big(f(S_{i-1}) - f(S^*)\big)
    \end{displaymath}
    which in turn implies by induction:
    \begin{displaymath}
        f(S_i)
        \geq \left(1-\left(1-\frac{1}{K}\right)^i\right) f(S^*)
    \end{displaymath}
    Taking $i=K$ and using $(1-\frac{1}{K})^K\leq \frac{1}{e}$ concludes the
    proof.
\end{proof}

\begin{remark}
    \cite{feige1998} proved that unless $\text{P}=\text{NP}$, no polynomial
    time algorithm can achieve an approximation ratio better than
    $1-\frac{1}{e}$ for the cardinality constrained maximization of set cover
    functions.
\end{remark}

\section{Knapsack Constraint}

There is now a cost function $c:N\to\R^+$ and a budget $B\in\R^+$. $c$ is
extended to $2^N$ by $c(S) = \sum_{e\in S} c(e)$. Consider the following
Knapsack constrained optimization problem:
\begin{displaymath}
    S^*\in\argmax_{S\,:\, c(S)\leq B} f(S)
\end{displaymath}

A natural way to extend Algorithm~\ref{alg:gc} to this case is
Algorithm~\ref{alg:gk}. The two main differences are that:
\begin{enumerate}
    \item instead of maximizing the marginal contribution at each time step,
        Algorithm~\ref{alg:gk} maximizes the ``bang-per-buck'': the marginal
        contribution divided by the cost.
    \item when adding an item would violate the budget constraint, the item is
        thrown away, and the iteration keeps inspecting possibly cheaper items.
\end{enumerate}

Unfortunately, Algorithm~\ref{alg:gk} has unbounded approximation ratio.
Similarly to the standard Knapsack problem (when $f$ is additive), problems
arise when there are high value items. Consider the case where $f$ is additive
and $N = \{e_1, e_2\}$ with $f(e_1) = v$, $f(e_2) = \eps v$, $c(e_1) = B$ and
$c(e_2) = \frac{\eps B}{2}$. The best solution is clearly to pick $\{e_1\}$ for
a value of $v$. In contrast, Algorithm~\ref{alg:gk} picks $\{e_2\}$ for a value
of $\eps v$. As $\eps$ gets close to zero, the approximation ratio becomes
arbitrarily large.

\begin{algorithm}
    \caption{Greedy (Knapsack constraint)}
    \label{alg:gk}
    \begin{algorithmic}[1]
        \Require $N$, $B$, value query oracle $f$, cost function $c$
        \State $S_G \gets \emptyset$
        \While{$N\neq \emptyset$}
        \State $x^*\gets \argmax_{x\in N} \frac{f_{S_G}(x)}{c(x)}$
        \If{$c(S_G)+c(x^*)\leq B$}\label{line:budget}
        \State $S_G \gets S_G + x^*$\label{line:add2}
            \EndIf
            \State $N\gets N - x^*$
        \EndWhile
        \State\textbf{return} $S_G$
    \end{algorithmic}
\end{algorithm}

However, the following lemma will be useful to use Algorithm~\ref{alg:gk} as
a building block for algorithms solving the Knapsack constrained submodular
maximization.

\begin{lemma}
    \label{lemma:greedy}
    Whenever line~\ref{line:budget} of Algorithm~\ref{alg:gk} evaluates to
    False, $f(S_G+x^*)\geq \big(1-\frac{1}{e}\big) f(S^*)$.
\end{lemma}

\begin{proof} 
    Let us denote by $S_i = \{e_1,\dots, e_i\}$, the value of $S_G$ after the
    $i$th time line~\ref{line:add2} of Algorithm~\ref{alg:gk} is executed.
    Then:
    \begin{align*}
        f(S^*)
        &\leq f(S_{i-1}) + \sum_{e\in S^*\setminus S_{i-1}} f_{S_{i-1}}(e)\\
        &= f(S_{i-1}) + \sum_{e\in S^*\setminus S_{i-1}}
        c(e)\frac{f_{S_{i-1}}(e)}{c(e)}\\
        &\leq f(S_{i-1}) + \frac{f(S_{i})-f(S_{i-1})}{c(e_i)}\sum_{e\in S^*\setminus S_{i-1}}
        c(e)\\
        &\leq f(S_{i-1}) + \frac{B}{c(e_i)}\big(f(S_{i})-f(S_{i-1})\big)
    \end{align*}
    where the first inequality used \cref{cor:sa}, the second inequality used
    the greediness of Algorithm~\ref{alg:gk} and the last inequality used that
    $c(S^*)\leq B$.

    Subtracting $\frac{B}{c_i}$ both sides and reordering the terms:
    \begin{displaymath}
        f(S_i)- f(S^*)
        \geq \left(1- \frac{c(e_i)}{B}\right)\big(f(S_{i-1}) - f(S^*)\big)
    \end{displaymath}
    Solving this recursive inequality yields:
    \begin{displaymath}
        f(S_i)
        \geq \left(1-\prod_{k=1}^i\left(1- \frac{c(e_i)}{B}\right)\right) f(S^*)
    \end{displaymath}
    Finally, using that $1-x\leq e^{-x}$:
    \begin{displaymath}
        f(S_i)
    \geq \left(1-\exp \frac{-c(S_i)}{B}\right) f(S^*)
    \end{displaymath}

    We are now ready to prove the lemma. Let us consider $S_G$ at some
    iteration of Algorithm~\ref{alg:gk} where line~\ref{line:add2} evaluates to
    false. The above analysis didn't assume that line~\ref{line:add2} evaluated
    to True when element $e_i$ was added to $S_G$, hence we can apply it to
    $S_G+x^*$:
    \begin{displaymath}
        f(S_G+x^*)
    \geq \left(1-\exp \frac{-c(S_G)-c(x^*)}{B}\right) f(S^*)
    \end{displaymath}
    and using that $c(S_G) + c(x^*) > B$ by assumption of \cref{lemma:greedy}
    concludes the proof.
\end{proof}

We now present two algorithms which exploit \cref{lemma:greedy} to obtain
a constant approximation ratio to the optimal solution.

\begin{algorithm}
    \caption{Greedy (Knapsack constraint), simple fix}
    \label{alg:gk1}
    \begin{algorithmic}[1]
        \Require $N$, $B$, value query oracle $f$, cost function $c$
        \State $e^*\gets \argmax_{e\in N,\, c(e)\leq B} f(e)$
        \State $S_G \gets$ result of Algorithm~\ref{alg:gk}
        \State\textbf{return} $\argmax\{f(S_G),f(e^*)\}$
    \end{algorithmic}
\end{algorithm}

\begin{proposition}
    Let $S$ be the set returned by Algorithm~\ref{alg:gk1}, then $f(S)\geq
    \frac{1}{2}\left(1-\frac{1}{e}\right) f(S^*)$.
\end{proposition}

\begin{proof}
    Let us consider the value of $S_G$ the first time line~\ref{line:budget} of
    Algorithm~\ref{alg:gk} evaluated to False after the last element of $S_G$
    was added:
    \begin{align*}
        2 f(S)&\geq f(S_G) + f(e^*)\geq f(S_G) + f(x^*)\\
              &\geq f(S_G+x^*) \geq \left(1-\frac{1}{e}\right)f(S^*)
    \end{align*}
    where the first inequality used the definition of $S$, the second
    inequality used the definition of $e^*$, the third inequality used the
    subadditivity of $f$ and the last inequality used Lemma~\ref{lemma:greedy}.
\end{proof}

\begin{remark}
    \cite{khuller1999} noted that the above analysis can be refined to show that
    the approximation ratio of Algorithm~\ref{alg:gk1} is at least
    $1-\frac{1}{\sqrt{e}}$.
\end{remark}

\begin{algorithm}
    \caption{Greedy (Knapsack constraint), partial enumeration}
    \label{alg:gk2}
    \begin{algorithmic}[1]
        \Require $N$, $B$, value query oracle $f$, cost function $c$
        \State $S_1\gets \argmax_{S\subseteq N,\, c(S)\leq B,\, |S| < d} f(S)$
        \State $S_2 \gets \emptyset$
        \ForAll{$S\subseteq N,\, |S|=d, c(S)\leq B$}
            \State $N'\gets N\setminus S$
            \State $S_G \gets$ Algorithm~\ref{alg:gk} for $N'$ and
            initialization $S_G\gets S$\label{line:greedy}
            \If{$f(S_G) > f(S_2)$}
                \State $S_2\gets S_G$
            \EndIf
        \EndFor
        \State\textbf{return} $\argmax\{f(S_1),f(S_2)\}$
    \end{algorithmic}
\end{algorithm}

For some constant $d$ (fixed later in the analysis), Algorithm~\ref{alg:gk2}
first compute $S_1$, the set of maximum value among all sets of at most $d-1$
elements. Then for all sets of $S$ of $d$ elements, the algorithm completes $S$
greedily using Algorithm~\ref{alg:gk} where the initialisation
$S_G\gets\emptyset$ is replaced by $S_G\gets S$. The best set obtained by such
a greedy completion is $S_2$. Algorithm~\ref{alg:gk2} then returns the best of
$S_1$ and $S_2$.

\begin{proposition}
    For $d=3$, let $S$ be the set returned by Algorithm~\ref{alg:gk2}, then
    $f(S)\geq \left(1-\frac{1}{e}\right) f(S^*)$.
\end{proposition}

\begin{proof}\emph{Wlog}, assume that $|S^*| > d$, otherwise
    Algorithm~\ref{alg:gk2} finds the optimal solution. Let us write $S^*
    = \{e_1^*,\ldots e_n^*\}$ and $S^*_i = \{e_1^*,\dots,e_i^*\}$ where the
    elements of $S^*$ where ordered such that:
    \begin{displaymath}
        e_i^* \in \argmax_{e\in S^*\setminus S^*_{i-1}} f_{S^*_{i-1}}(e)
    \end{displaymath}

    Let us now consider the iteration of Algorithm~\ref{alg:gk2} where
    $S=S^*_d$. Then line~\ref{line:greedy} is equivalent to running
    Algorithm~\ref{alg:gk} for the function $f_{S_d^*}$ and set $N\setminus
    S^*_d$. Let us consider the first time line~\ref{line:add1} of
    Algorithm~\ref{alg:gk} evaluated to false for some element $x^*$ of
    $S^*\setminus S^*_d$\footnote{This necessarily happens since all the
    elements in $N$ are eventually considered in the while loop.}. Then by
    Lemma~\ref{lemma:greedy}:
    \begin{equation}
        \label{eq:foo1}
        f(S_G + x^*) - f(S_d^*)\geq \left(1-\frac{1}{e}\right) \big(f(S^*)
        - f(S^*_d)\big)
    \end{equation}
    But by submodularity of $f$ and the ordering of $S^*_d$:
    \begin{displaymath}
        f_{S_G}(x^*)\leq f_{S_i^*}(x^*)\leq f(S_i^*) -f(S_{i-1}^*),
        \quad 1\leq i \leq d
    \end{displaymath}
    Summing for $1\leq i\leq d$:
    \begin{equation}
        \label{eq:foo2}
        f(S_G+x^*)\leq f(S_G) + \frac{1}{d} f(S_d^*)
    \end{equation}
    Combining \cref{eq:foo1,eq:foo2} gives
    \begin{displaymath}
        f(S_G)\geq \left(1-\frac{1}{e}\right)f(S^*)
        + \left(\frac{1}{e}-\frac{1}{d}\right) f(S^*_d)
    \end{displaymath}
    which concludes the proof after observing that $\frac{1}{e}-\frac{1}{d}>0$
    for $d=3$.
\end{proof}

\section{Matroid Constraint}

\begin{definition}
    A \emph{matroid} $M$ is a pair $(N,\mathcal{I})$. $N$ is a finite set
    called the \emph{ground set} and $\mathcal{I}$ is family of subsets of $N$
    called the \emph{independent sets} such that:
    \begin{enumerate}
        \item (downward closure) if $B\in\mathcal{I}\text{ and } A\subseteq B$
            then $A\in\mathcal{I}$
        \item (exchange property) if $A\in\mathcal{I}, B\in\mathcal{I}$ and
            $|A| < |B|$ then there exists $x\in B\setminus A$ such that
            $A+x\in \mathcal{I}$
    \end{enumerate}
    Maximal independent sets of $M$ are called \emph{bases}.
\end{definition}

\begin{remark}
It follows from the exchange property that all bases have the same cardinality.
This cardinality is the \emph{rank} of $M$.
\end{remark}

\begin{proposition}[bijective basis exchange]
    \label{prop:bbe}
    If $B_1$ and $B_2$ are two bases of a matroid $M$, then there exists
    a bijection $\phi:B_1\setminus B_2\to B_2\setminus B_1$ such that:
    \begin{displaymath}
        \forall x\in B_1\setminus B_2,\;
        B_1 - x + \phi(x)\in\mathcal{I}
    \end{displaymath}
\end{proposition}

\begin{proof} This is a standard result in matroid theory.
\end{proof}

\begin{remark}
    The bijection $\phi$ of \cref{prop:bbe} can be extended to $\phi:B_1\to
    B_2$ by defining it to be the identity function on $B_1\cap B_2$.
\end{remark}

We now look at the problem of maximizing a monotone submodular function over
a matroid $M=(N,\mathcal{I})$:
\begin{displaymath}
    S^* \in \argmax_{S\in\mathcal{I}} f(S)
\end{displaymath}
From a computational perspective, we still assume a value query oracle for $f$.
Furthermore, we assume an \emph{independence oracle} for $M$: given
$S\subseteq N$, the independence oracle tests whether or not
$S\in\mathcal{I}$.

\begin{algorithm}
    \caption{Greedy (Matroid constraint)}
    \label{alg:gmat}
    \begin{algorithmic}[1]
        \Require{$N$, value query oracle $f$, independence oracle for
        $\mathcal{I}$}
        \State $S_G \gets \emptyset$
        \While{$N\neq \emptyset$}
        \State $x^*\gets \argmax_{x\in N} f_{S_G}(x)$
            \If{$S_G+x\in\mathcal{I}$}
            \State $S_G \gets S_G + x^*$
            \EndIf
            \State $N\gets N - x^*$
        \EndWhile
        \State\textbf{return} $S_G$
    \end{algorithmic}
\end{algorithm}

\begin{remark}
    The set $S_G$ constructed by Algorithm~\ref{alg:gmat} is a base of $M$.
    When the rank $K$ of $M$ is known, the while loop can be stopped as soon as
    $|S_G| = K$ (cf. cardinality constrained submodular maximization).
\end{remark}

\begin{proposition}
    Let $S_G$ be the set returned by Algorithm~\ref{alg:gmat}, then $f(S_G)\geq
    \frac{1}{2} f(S^*)$.
\end{proposition}

\begin{proof}
    \emph{Wlog}, assume that $S^*$ is a base of $M$. Let $\phi:S^*\to
    S_G$ be a bijection as in \cref{prop:bbe}. Le us write:
    \begin{displaymath}
        S^* = \{e_1^*,\ldots, e_K^*\}
        \text{ and }
        S_G = \{e_1,\ldots, e_K\}
    \end{displaymath}
    where $e_i =\phi(e_i^*)$ and define $S_i = \{e_1,\dots,e_i\}$. Then:
    \begin{align*}
        f(S^*) -  f(S_G) &\leq \sum_{i=1}^K f_{S_G}(e_i^*)
        \leq\sum_{i=1}^K f_{S_{i-1}}(e_i^*)\\
        %&\leq\sum_{i=1}^K f_{S_{i-1}}(e_i)
        &\leq\sum_{i=1}^K f(S_i) - f(S_{i-1})
              = f(S_G)
    \end{align*}
    where the first inequality used \cref{cor:sa}, the second inequality used
    submodularity of $f$, and the third inequality used the greediness of
    Algorithm~\ref{alg:gmat} and that $S_{i-1}+e_i^*\in\mathcal{I}$ by
    \cref{prop:bbe}.
\end{proof}

\section{Bibliographical Notes}

A systematic analysis of greedy algorithms for submodular maximization was made
by \cite{fisher1978,nemhauser1978}. The results about submodular maximization
under cardinality and matroid constraints can be found in these papers, even
though some of them  had already been obtained by \cite{edmonds1971}. The lower
bound of $(1-\frac{1}{e})$ for the approximation ratio of a polynomial time
algorithm is due to \cite{feige1998}.

For Knapsack constraints, \cite{khuller1999} were the first to obtain an
approximation ratio of $(1-\frac{1}{e})$ using partial enumeration in the case
of a set cover function. It was then noted by \cite{sviridenko2004}, that the
result extended to any submodular function.

It is possible to obtain a $(1-\frac{1}{e})$ approximation ratio under matroid
constaints. This result was first obtained by \cite{calinescu2007} using
continuous optimization. A combinatorial algorithm was later constructed by
\cite{filmus2012}.

More complex constraints can also be considered: intersection of independence
systems, matroids, knapsack constraints. \cite{nemhauser1978} summarize some
results from the late 70's. A general framework to combine constraints can be
found in \cite{vondrak2011}.

\bibliographystyle{abbrvnat}
\bibliography{sub}
\end{document}