aboutsummaryrefslogtreecommitdiffstats
path: root/utils/string_utils.py
diff options
context:
space:
mode:
authorGuillaume Horel <guillaume.horel@gmail.com>2014-09-07 18:21:37 -0400
committerGuillaume Horel <guillaume.horel@gmail.com>2014-09-07 18:24:08 -0400
commit0e8b0c88a4d3009cbbea695f606e49faef27f373 (patch)
tree85a14a7aef3ee36e73544382c6fdec8aa6bd375c /utils/string_utils.py
parent74604d7b8ae98b125f1c800da753f8ab67474eb5 (diff)
downloadocr-layer-curation-0e8b0c88a4d3009cbbea695f606e49faef27f373.tar.gz
Reorganize the code
hope I did it right. We have two packages now, one for the server and one for the actual library.
Diffstat (limited to 'utils/string_utils.py')
-rw-r--r--utils/string_utils.py161
1 files changed, 161 insertions, 0 deletions
diff --git a/utils/string_utils.py b/utils/string_utils.py
new file mode 100644
index 0000000..b6c8ce0
--- /dev/null
+++ b/utils/string_utils.py
@@ -0,0 +1,161 @@
+# -*- coding: utf-8 -*-
+from Levenshtein import distance as levenshtein
+import re
+import itertools
+
+def simplify(text):
+ mapp = [(u"’", u"'"), (u"↑", u"."), (u"…", u"..."), (u"É", u"E"),
+ (u"À", u"A"), (u"Ô", u"O"), (u"—", u"-")]
+
+ for a, b in mapp:
+ text = text.replace(a, b)
+
+ return text
+
+def cut(word, left, right):
+ """Return pair of strings (p + "-", s) such that p+s == word and
+ L(p + "-", left) + L(s, right) is minimal, where L is the levenshtein
+ distance.
+
+ Implementation is suboptimal since the computation of the Levenshtein
+ distances will involve comparing the same segments repeatedly.
+
+ TODO: handle the case when word contains an hyphen (e.g. c'est-a-dire)
+ """
+
+ def aux(i):
+ leftw, rightw = word[:i] + "-", word[i:]
+ return (leftw, rightw,
+ levenshtein(leftw, left) + levenshtein(rightw, right))
+
+ l = [aux(i) for i in xrange(len(word) + 1)]
+ return min(l, key=lambda x: x[2])[:2]
+
+def join_ocr_words(l, c):
+ m = list(l)
+ if len(l) >= 2 and c[-2][2] > c[-1][0] and (not l[-2][-1].isalnum()):
+ l[-2] = l[-2][:-1]
+ return "".join(l)
+
+def join_words(l):
+ return "".join(l)
+
+def align(l1, l2, c2):
+ """Compute the optimal alignment between two list of words
+ à la Needleman-Wunsch.
+
+ The function returns a (score, alignment) pair. An alignment is simply
+ a list of list of size len(l1) giving for each word in l1, the list of
+ indices in l2 it maps to (the list is empty if the word maps to nothing).
+
+ Note that if the list is of size>1, the word in l1 will map to a sequence
+ of words in l2. Conversly, consecutive words in l1 can map to
+ the same word in l2.
+ """
+
+ # Throughout the function, l1 is to be thought of as the proofread text,
+ # and l2 as the OCR text. The deletion costs are not symmetric: removing
+ # junk from the OCR is frequent while removing a word from the proofread
+ # text should be rare.
+ del_cost1 = 50
+ def del_cost2(w):
+ return 1+3*len([c for c in w if c.isalnum()])
+ w = 3 # multiplicative cost factor for the Levenshtein distance
+
+ n, m = len(l1), len(l2)
+ # a is the (score, alignment) matrix. a[i][j] is the (score, alignment)
+ # pair of the first i words of l1 to the first j words of l2
+ a = [[(0, [])] * (m + 1) for i in xrange(n + 1)]
+
+ for j in xrange(1, m + 1):
+ a[0][j] = j, []
+
+ for i in xrange(1, n + 1):
+ a[i][0] = i * del_cost1, [[]] * i
+
+ for j in xrange(1, m + 1):
+
+ s, b = a[i-1][j-1]
+ d = levenshtein(l1[i-1], l2[j-1])
+ min_s, min_b = s + w * d, b + [[j-1]]
+
+ s, b = a[i-1][j]
+ if s + del_cost1 < min_s:
+ min_s, min_b = s + del_cost1, b + [[]]
+
+ s, b = a[i][j-1]
+ if s + del_cost2(l2[j-1]) < min_s:
+ min_s, min_b = s + del_cost2(l2[j-1]), b
+
+ for k in xrange(1, 8):
+ for l in xrange(1, 5):
+ if k + l <= 2:
+ continue
+ if k+l > 7:
+ break
+ if j < l or i < k:
+ break
+ s, b = a[i-k][j-l]
+ d = levenshtein(join_words(l1[i-k:i]),
+ join_ocr_words(l2[j-l:j], c2[j-l:j]))
+ if s + w * d < min_s:
+ temp = [[j-1]] if l == 1 else [range(j-l, j)]
+ min_s, min_b = s + w * d, b + temp * k
+
+ a[i][j] = min_s, min_b
+
+ return a[n][m]
+
+def print_alignment(l1, l2, c2, alignment):
+ """Given two list of words and an alignment (as defined in :func:`align`)
+ print the two list of words side-by-side and aligned.
+ """
+ prev = 0
+ for index, g in itertools.groupby(zip(l1, alignment), lambda x:x[1]):
+ word = " ".join([a[0] for a in g])
+ if not index:
+ print u"{0:>25} | ".format(word)
+ else:
+ begin, end = index[0], index[-1]
+ for i in range(prev, begin-1):
+ print u"{0:>25} | {1}".format("", l2[i+1])
+ prev = end
+
+ if end > begin:
+ print u"{0:>25} | {1:<25} (M)".format(word,
+ join_ocr_words(l2[begin:end+1], c2[begin:end+1]))
+ else:
+ print u"{0:>25} | {1:<25}".format(word, l2[begin])
+
+ if not l1:
+ for word in l2:
+ print u"{0:>25} | {1}".format("", word)
+
+def invert_align(alignment, n):
+ l = [[] for _ in range(n)]
+ for i, e in enumerate(alignment):
+ for a in e:
+ l[a].append(i)
+ return l
+
+def alignment_to_coord(l1, alignment):
+ # l1 list of corrected words
+ # alignment list of size len(l1) qui mappe mots dans l2
+ # returns indices in l2
+
+ r = []
+ prev = 0
+ for index, g in itertools.groupby(zip(l1, alignment), lambda x:x[1]):
+ word = " ".join([a[0] for a in g])
+ r.append([word, index])
+ # if not index:
+ # r.append([word, None])
+ # else:
+
+ # begin, end = index[0], index[-1]
+ # if end > begin:
+ # #need to find a better way to get the box coordinates
+ # r.append([word, begin])
+ # else:
+ # r.append([word, begin])
+ return r