1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
# -*- coding: utf-8 -*-
from Levenshtein import distance as levenshtein
import re
import itertools
def simplify(text):
mapp = [(u"’", u"'"), (u"↑", u"."), (u"…", u"..."), (u"É", u"E"),
(u"À", u"A"), (u"Ô", u"O"), (u"—", u"-")]
for a, b in mapp:
text = text.replace(a, b)
return text
def cut(word, left, right):
"""Return pair of strings (p + "-", s) such that p+s == word and
L(p + "-", left) + L(s, right) is minimal, where L is the levenshtein
distance.
Implementation is suboptimal since the computation of the Levenshtein
distances will involve comparing the same segments repeatedly.
TODO: handle the case when word contains an hyphen (e.g. c'est-a-dire)
"""
def aux(i):
leftw, rightw = word[:i] + "-", word[i:]
return (leftw, rightw,
levenshtein(leftw, left) + levenshtein(rightw, right))
l = [aux(i) for i in xrange(len(word) + 1)]
return min(l, key=lambda x: x[2])[:2]
def join_ocr_words(l, c):
m = list(l)
if len(l) >= 2 and c[-2][2] > c[-1][0] and (not l[-2][-1].isalnum()):
l[-2] = l[-2][:-1]
return "".join(l)
def join_words(l):
return "".join(l)
def align(l1, l2, c2):
"""Compute the optimal alignment between two list of words
à la Needleman-Wunsch.
The function returns a (score, alignment) pair. An alignment is simply
a list of list of size len(l1) giving for each word in l1, the list of
indices in l2 it maps to (the list is empty if the word maps to nothing).
Note that if the list is of size>1, the word in l1 will map to a sequence
of words in l2. Conversly, consecutive words in l1 can map to
the same word in l2.
"""
# Throughout the function, l1 is to be thought of as the proofread text,
# and l2 as the OCR text. The deletion costs are not symmetric: removing
# junk from the OCR is frequent while removing a word from the proofread
# text should be rare.
del_cost1 = 50
def del_cost2(w):
return 1+3*len([c for c in w if c.isalnum()])
w = 3 # multiplicative cost factor for the Levenshtein distance
n, m = len(l1), len(l2)
# a is the (score, alignment) matrix. a[i][j] is the (score, alignment)
# pair of the first i words of l1 to the first j words of l2
a = [[(0, [])] * (m + 1) for i in xrange(n + 1)]
for j in xrange(1, m + 1):
a[0][j] = j, []
for i in xrange(1, n + 1):
a[i][0] = i * del_cost1, [[]] * i
for j in xrange(1, m + 1):
s, b = a[i-1][j-1]
d = levenshtein(l1[i-1], l2[j-1])
min_s, min_b = s + w * d, b + [[j-1]]
s, b = a[i-1][j]
if s + del_cost1 < min_s:
min_s, min_b = s + del_cost1, b + [[]]
s, b = a[i][j-1]
if s + del_cost2(l2[j-1]) < min_s:
min_s, min_b = s + del_cost2(l2[j-1]), b
for k in xrange(1, 8):
for l in xrange(1, 5):
if k + l <= 2:
continue
if k+l > 7:
break
if j < l or i < k:
break
s, b = a[i-k][j-l]
d = levenshtein(join_words(l1[i-k:i]),
join_ocr_words(l2[j-l:j], c2[j-l:j]))
if s + w * d < min_s:
temp = [[j-1]] if l == 1 else [range(j-l, j)]
min_s, min_b = s + w * d, b + temp * k
a[i][j] = min_s, min_b
return a[n][m]
def print_alignment(l1, l2, c2, alignment):
"""Given two list of words and an alignment (as defined in :func:`align`)
print the two list of words side-by-side and aligned.
"""
prev = 0
for index, g in itertools.groupby(zip(l1, alignment), lambda x:x[1]):
word = " ".join([a[0] for a in g])
if not index:
print u"{0:>25} | ".format(word)
else:
begin, end = index[0], index[-1]
for i in range(prev, begin-1):
print u"{0:>25} | {1}".format("", l2[i+1])
prev = end
if end > begin:
print u"{0:>25} | {1:<25} (M)".format(word,
join_ocr_words(l2[begin:end+1], c2[begin:end+1]))
else:
print u"{0:>25} | {1:<25}".format(word, l2[begin])
if not l1:
for word in l2:
print u"{0:>25} | {1}".format("", word)
def invert_align(alignment, n):
l = [[] for _ in range(n)]
for i, e in enumerate(alignment):
for a in e:
l[a].append(i)
return l
def alignment_to_coord(l1, alignment):
# l1 list of corrected words
# alignment list of size len(l1) qui mappe mots dans l2
# returns indices in l2
r = []
prev = 0
for index, g in itertools.groupby(zip(l1, alignment), lambda x:x[1]):
word = " ".join([a[0] for a in g])
r.append([word, index])
# if not index:
# r.append([word, None])
# else:
# begin, end = index[0], index[-1]
# if end > begin:
# #need to find a better way to get the box coordinates
# r.append([word, begin])
# else:
# r.append([word, begin])
return r
|