summaryrefslogtreecommitdiffstats
path: root/stage/article.tex
blob: 8e3df34392ac1637a4e7b94f38cea868b3f9a27a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
\documentclass[a4paper,10pt]{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{listings}
\lstdefinelanguage{pseudo}
  {morekeywords={if, then, else, end, let, and, for, in, while}}
\lstset{escapechar=?, mathescape=true, language=pseudo, frame=single,
basicstyle=\sffamily\small, keywordstyle=\sffamily\bfseries}


\title{Pacemaker}

\begin{document}

\maketitle

\section{Protocol}

\subsection{Assumptions and notations}

It is assumed that each peer $p$ has a pair of public/private key
\textsf{(K$^p_{pub}$, K$^p_{priv}$)} and has access to the 3
following cryptographic primitives:
\begin{itemize}
 \item{\sf sign(data, K$_{priv}$):} Returns a signature for \textsf{data} 
 using the private key \textsf{K$_{priv}$}.
 \item{\sf verify(S, data, K$_{pub}$):} Verifies that \textsf{S} is a
 signature for \textsf{data} that was created using the private key
 \textsf{K$_{priv}$} associated with \textsf{K$_{pub}$}.
 \item{\sf hash(data):} Returns the hash of \textsf{data}.
\end{itemize}

The key pair of the server will be denoted by \textsf{(KS$_{pub}$,
KS$_{priv}$)}. \textsf{KS$_{pub}$} is assumed to be known by every peer.

Each peer $p$ knows the list of peers to whom he is connected, this list is denoted by $NS_p$.
If $q\in NS_p$ then $p$ can send the message $m$ to $q$ using the function \textsf{send($q$, $m$)}.

$\langle a, b, \ldots\rangle$ will be used to denote the serialisation (depending on the implemetation) of
two or more pieces of data.

\subsection{Principle}

The protcol works in three phases:

\subsubsection*{Phase 1: Seeding}

The server generates a unique seed and initiates
a seed pulse which is diffused through the network. Upon receiving the seed,
each peer signs it with his private key and hashes it. This hash is called the
\emph{token} of the peer.

\textsf{Seed($i$, seed$^i$, $T$, S$^i_{seed}$)} is used to diffuse the seed
pulse during this phase, where:
\begin{itemize}
	\item $i$ is the round number.
	\item \textsf{seed$^i$} is the seed of round $i$.
	\item $T$ is the duration of the seeding phase.
	\item \textsf{S$^i_{pulse}$} is \textsf{sign($\langle$$i$, seed$^i$, $T$$\rangle$, KS$_{priv}$)}.
\end{itemize}

\subsubsection*{Phase 2: Hashing}

Each peer starts collecting the tokens of his
neighbors and adds his own token to the collected hashes, obtaining a
peer-token map. The hash of this map yields a new token which is sent back to
the neighbors. This progressively builds a hash graph, until the root
server itself hashes the tokens of its children. 

\textsf{SeedReply($i$, H$_p$)} is used to build the hash graph during this phase,
where \textsf{H$_p$} is the token sent by peer $p$, that is, the hash of
the collected map of the tokens received by peer $p$.

\subsubsection*{Phase 3: Pulse}

The server initiates a new pulse with the map it has
collected from its childrens. Upon receiving the pulse, each peer adds to the
pulse the map associated with the token that has been collected during 
Phase 2. Thus, each peer receives a list of hash maps
corresponding to a path from the root to himself in the hash graph computed during Phase 2.

\textsf{Pulse($i$, seed$^i$, branch$^i$, S$^i_{pulse}$)} is used to diffuse the pulse during this
phase, where:
\begin{itemize}
    \item \textsf{branch$^i$} is a list of hash maps associated to a path from the server
    to the current peer.
    \item \textsf{S$^i_{pulse}$} is \textsf{sign($\langle$i, seed$^i$, H$^i$$\rangle$, KS$_{priv}$)}.
\end{itemize}

\subsubsection*{Challenges}

The protocol also provides the following request/reply logic to challenge the
availability of a peer:

\begin{itemize}
  \item{\sf Availability($i$, bits):} used by a peer to send his avaibility
  history up to round $i$. \textsf{bits} is a bit array where a $0$ (resp. 1)
  bit at index $j$ means that the peer was absent (resp. available) during round
  $j$.
  \item{\sf Challenge($i$):} used to ask a peer the proof of his presence
  during round $i$.
  
  \item{\sf Proof($i$, seed$^i$, branch$^i$, S$^i_p$, S$^i_{pulse}$):} to answer
  a challenge, where \textsf{S$^i_p$} is \textsf{sign($\langle$i, seed$^i$$\rangle$,
  K$^p_{priv}$)}.
\end{itemize}

\subsection{Phase 1: Seeding}

\begin{lstlisting}[title=Server at round $i$]
  let phase$^i$ = SEEDING;
  let seed$^i$ = random_seed();
  let S$^i_{seed}$ = sign($\langle$$i$,seed$^i$, $T$$\rangle$, KS$_{priv}$);
  let M$^i_{seed}$ = Seed($i$, seed$^i$, $T$, S$^i_{seed}$);
  let map$^i$ = $\emptyset$;
  $\forall q \in$ NS$_{server}$, send($q$, M$^i_{seed}$);

  wait $T$;
\end{lstlisting}

\begin{lstlisting}[title={Peer $p$ receiving \textsf{Seed($i$,
seed$^i$, $T$, S$^i_{seed}$)}}]
  if
    verify(S$^i_{seed}$, $\langle$$i$,seed$^i$,$T$$\rangle$, KS$_{pub}$)
  then
    $\forall q \in$ NS$_p$, send($q$, M$^i_{seed}$);    

    let S$^i_p$ = sign($\langle$$i$,seed$^i$$\rangle$, K$^p_{priv}$);
    let map$^i$ = {$p \rightarrow$hash(S$^i_p$)};
    let nreplies$^i$ = 0;
    let replies$^i$ = $\emptyset$;
    let included$^i$ = $\bot$;
    let duration$^i$ = T;
    let phase$^i$ = SEEDING;
  end if
\end{lstlisting}

\subsection{Phase 2: Hashing}

\begin{lstlisting}[title={Every $\Delta << T$ seconds, on peer $p$}]
  if phase$^i$ = SEEDING then
    let H$^i$ = hash(map$^i$);
    let M$^i_{seedreply}$ = SeedReply($i$, H$^i$);
    nreplies$^i$ = nreplies$^i+1$;
    replies$^i$[nreplies$^i$] = (H$^i$, map$^i$);
    $\forall q \in$ NS$_p$, send($q$, M$^i_{seedreply}$);    
  end if
\end{lstlisting}

\begin{lstlisting}[title={Server or peer receiving \textsf{SeedReply($i$,
X$_q$)} from peer $q$}]
  if phase$^i$ = SEEDING then
    map$^i$ = $\{ q \rightarrow $X$_q \} \oplus$map$^i$;
  end if
\end{lstlisting}

\subsection{Phase 3: Pulse}

\begin{lstlisting}[title=Server at round $i$ (after having waited $T$)]
  phase$^i$ = IDLE;
  let H$^i$ = hash(map$^i$);
  let branch$^i$ = $\emptyset$;
  branch$^i$[0] = map$^i$;
  let S$^i_{pulse}$ = sign($\langle$$i$,seed$^i$,H$^i$$\rangle$, KS$_{priv}$);
  let M$^i_{pulse}$ = Pulse($i$, seed$^i$, branch$^i$, S$^i_{pulse}$); 
  $\forall q \in$ NS$_{server}$, send($q$, M$^i_{pulse}$);
\end{lstlisting}

\begin{lstlisting}[title={Peer $p$ receiving \textsf{Pulse($i$, seed$^i$, branch$^i$, S$^i_{pulse}$)}}]
  if
    verify(S$^i_{pulse}$, $\langle$$i$,seed$^i$,hash(branch$^i$[0])$\rangle$, KS$_{pub}$) 
  then
     phase$^i$ = IDLE;
     let level = length(branch$^i$)-1;
     if
       $\exists$ {$p$ $\rightarrow$ H$^i$} $\in$ branch$^i$[level] and
       $\exists\; n\; |$replies[$n$] = (H$^i$, oldmap$^i$) and
       included$^i$ $$\langle$ n$ and
       $\forall\; n\in$[1..level], hash(branch$^i$[n]) $\in$ branch$^i$[n-1]
     then
       let branch'$^i$ = branch$^i$[level+1] = oldmap$^i$;
       let M$^i_{pulse}$ = Pulse($i$, seed$^i$, branch'$^i$, S$^i_{pulse}$);
       History[$i$] = ($i$, seed$^i$, branch'$^i$, S$^i_p$, S$^i_{pulse}$);
       included$^i$ = $n$;
       $\forall q \in$ NS$_p$, send($q$, M$^i_{pulse}$);
    end if
  end if
\end{lstlisting}

\subsection{Challenges}
\begin{lstlisting}[title=Peer $p$ sending to $q$ his availability at round $i$ over the last $N_t$ rounds]
  let bits$^i$ = new bitfield[$N_t$];
  for $x$ in [1..$N_t$]
    if History[$i-N_t+x$] = $\emptyset$ then
      bits$^i$[$x$] := 0;
    else
      bits$^i$[$x$] := 1;
    end if
  end for  
  let M$^i_{avail}$ = Availability($i$, bits);
  send($q$, M$^i_{avail}$);
\end{lstlisting}

\begin{lstlisting}[title={Peer $p$ sending to $q$ \textsf{Challenge($i$)}}]
  challenges[$q$] = challenges[$q$]$\oplus${$i\rightarrow$ WAITING};
  let M$^i_{challenge}$ = Challenge($i$);
  send($q$, M$^i_{challenge}$);
\end{lstlisting}

\begin{lstlisting}[title={Peer $p$ receiving \textsf{Challenge($i$)} from peer
$q$}]
  let M$^i_{pulse}$ = Proof(History[$i$]);
  send($q$, M$^i_{pulse}$);
\end{lstlisting}

\begin{lstlisting}[title={Peer $q$ receiving from peer $p$ \textsf{Proof($i$, seed$^i$, branch$^i$, S$^i_p$, S$^i_{pulse}$)}}]
  let level = length(branch$^i$)-1;
  if
     $i$ $\in$ challenges[p] and
     verify(S$^i_{pulse}$, $\langle$$i$,seed$^i$, hash(branch$^i$[0])$\rangle$, KS$_{pub}$) and
     verify(S$^i_p$, $\langle$$i$, seed$^i$$\rangle$, K$^p_{pub}$) and
     {$p\rightarrow$hash(S$^i_p$)} $\in$ branch$^i$[level] and
     $\forall\; n\in$[1..level], hash(branch$^i$[n]) $\in$ branch$^i$[n-1]
  then
     challenge[$q$] = challenge[$q$]$\oplus${$i\rightarrow$ PROVEN};
  else
     challenge[$q$] = challenge[$q$]$\oplus${$i\rightarrow$ WRONG};
  end if
\end{lstlisting}

\end{document}