1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
\documentclass[a4paper,10pt]{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[french]{babel}
\usepackage{listings}
\lstdefinelanguage{pseudo}
{morekeywords={if, then, else, end, let, and, for, in, while}}
\lstset{escapechar=?, mathescape=true, language=pseudo, frame=single,
basicstyle=\small, keywordstyle=\bfseries, captionpos=b}
\renewcommand{\lstlistingname}{Spec.}
\usepackage{amsthm}
\newtheorem{thm}{Theorem}
\theoremstyle{remark}
\newtheorem*{rem}{Remark}
\title{Pacemaker}
\begin{document}
\maketitle
\section{Introduction}
Tous les réseaux pair-à-pair ont en commun d'avoir un dynamique complexe : naissances, morts, arrivées, départs, indisponibilité temporaires peuvent survenir à tout instant. Ainsi, la \emph{disponibilité} d'un noeud est une caractérisitique importante pour déterminer l'impact d'un nœud sur le réseau. La \emph{disponibilité} d'un nœud est définie comme étant la fraction du temps passée par le nœud sur le réseau.
C'est pourquoi de nombreux protocoles de réseaux pair-à-pair s'appuient sur la disponibilité des nœuds. Deux utilisations différentes de cette information sont à distinguer:
\begin{itemize}
\item la structuration du réseau, ou bien par l'élection de super-peer (cf. ...) ou dans la sélection des voisins (cf. backup)
\item assurer une plus grande justice dans la répartition d'un service : faire en sorte que les gens qui ont la plus grande disponibilité aient plus d'avantages sur le réseau.
\end{itemize}
Malheureusement, la plupart de ces stratégies s'appuyant sur la disponibilité s'appuient sur un oracle qui leur fournirait cette information. Il existe deux approches fondamentalement opposées pour construire un tel oracle
\begin{itemize}
\item de façon centralisée
\item peer-review
\end{itemize}
Chacune de ces deux approches présente un défaut,
\section{Model}
\section{Protocol}
\subsection{Assumptions and notations}
It is assumed that each peer $p$ has a pair of public/private key
\textsf{(K$^p_{pub}$, K$^p_{priv}$)} and has access to the 3
following cryptographic primitives:
\begin{itemize}
\item{\sf sign(data, K$_{priv}$):} Returns a signature for \textsf{data}
using the private key \textsf{K$_{priv}$}.
\item{\sf verify(S, data, K$_{pub}$):} Verifies that \textsf{S} is a
signature for \textsf{data} that was created using the private key
\textsf{K$_{priv}$} associated with \textsf{K$_{pub}$}.
\item{\sf hash(data):} Returns the hash of \textsf{data}.
\end{itemize}
The key pair of the server will be denoted by \textsf{(KS$_{pub}$,
KS$_{priv}$)}. \textsf{KS$_{pub}$} is assumed to be known by every peer.
Each peer $p$ knows the list of peers to whom he is connected, this list is denoted by $NS_p$.
If $q\in NS_p$ then $p$ can send the message $m$ to $q$ using the function \textsf{send($q$, $m$)}.
$\langle a|b|\ldots\rangle$ will be used to denote the serialisation
(depending on the implemetation) of two or more pieces of data.
\subsection{Principle}
The protcol works in three phases:
\subsubsection*{Phase 1: Seeding}
The server generates a unique seed and initiates
a seed pulse which is diffused through the network. Upon receiving the seed,
each peer signs it with his private key and hashes it. This hash is called the
\emph{token} of the peer.
\textsf{Seed($i$, seed$^i$, $T^i$, S$^i_{seed}$)} is used to diffuse the seed
pulse during this phase, where:
\begin{itemize}
\item $i$ is the round number.
\item \textsf{seed$^i$} is the seed of round $i$.
\item $T^i$ is the duration of the seeding phase.
\item \textsf{S$^i_{pulse}$} is
\textsf{sign($\langle$$i$|seed$^i$|$T^i\rangle$, KS$_{priv}$)}.
\end{itemize}
\subsubsection*{Phase 2: Hashing}
Each peer starts collecting the tokens of his
neighbors and adds his own token to the collected hashes, obtaining a
peer-token map. The hash of this map yields a new token which is sent back to
the neighbors. This progressively builds a hash graph, until the root
server itself hashes the tokens of its children.
\textsf{SeedReply($i$, H$_p$)} is used to build the hash graph during this phase,
where \textsf{H$_p$} is the token sent by peer $p$, that is, the hash of
the collected map of the tokens received by peer $p$.
\subsubsection*{Phase 3: Pulse}
The server initiates a new pulse with the map it has
collected from its childrens. Upon receiving the pulse, each peer adds to the
pulse the map associated with the token that has been collected during
Phase 2. Thus, each peer receives a list of hash maps
corresponding to a path from the root to himself in the hash graph computed during Phase 2.
\textsf{Pulse($i$, seed$^i$, branch$^i$, S$^i_{pulse}$)} is used to diffuse the pulse during this
phase, where:
\begin{itemize}
\item \textsf{branch$^i$} is a list of hash maps associated to a path from the server
to the current peer.
\item \textsf{S$^i_{pulse}$} is \textsf{sign($\langle$i|seed$^i$|H$^i$$\rangle$, KS$_{priv}$)}.
\end{itemize}
\subsubsection*{Challenges}
The protocol also provides the following request/reply logic to challenge the
availability of a peer:
\begin{itemize}
\item{\sf Availability($i$, bits):} used by a peer to send his avaibility
history up to round $i$. \textsf{bits} is a bit array where a $0$ (resp. 1)
bit at index $j$ means that the peer was absent (resp. available) during round
$j$.
\item{\sf Challenge($i$):} used to ask a peer the proof of his presence
during round $i$.
\item{\sf Proof($i$, seed$^i$, branch$^i$, S$^i_p$, S$^i_{pulse}$):} to answer
a challenge, where \textsf{S$^i_p$} is \textsf{sign($\langle$i|seed$^i$$\rangle$, K$^p_{priv}$)}.
\end{itemize}
\subsection{Phase 1: Seeding}
\begin{lstlisting}[caption=Server at round $i$]
let phase$^i$ = SEEDING;
let seed$^i$ = random_seed();
let S$^i_{seed}$ = sign($\langle$$i$|seed$^i$|$T^i$$\rangle$, KS$_{priv}$);
let M$^i_{seed}$ = Seed($i$, seed$^i$, $T^i$, S$^i_{seed}$);
let map$^i$ = $\emptyset$;
$\forall q \in$ NS$_{server}$, send($q$, M$^i_{seed}$);
wait $T^i$;
\end{lstlisting}
\begin{lstlisting}[caption={Peer $p$ receiving \textsf{Seed($i$,
seed$^i$, $T^i$, S$^i_{seed}$)}}]
if
verify(S$^i_{seed}$, $\langle$$i$|seed$^i$|$T^i$$\rangle$, KS$_{pub}$)
then
$\forall q \in$ NS$_p$, send($q$, M$^i_{seed}$);
let S$^i_p$ = sign($\langle$$i$|seed$^i$$\rangle$, K$^p_{priv}$);
let map$^i$ = {$p \rightarrow$hash(S$^i_p$)};
let nreplies$^i$ = 0;
let replies$^i$ = $\emptyset$;
let included$^i$ = $\bot$;
let duration$^i$ = $T^i$;
let phase$^i$ = SEEDING;
end if
\end{lstlisting}
\subsection{Phase 2: Hashing}
\begin{lstlisting}[caption={Every $\Delta << T^i$ seconds, on peer $p$}]
if phase$^i$ = SEEDING then
let H$^i$ = hash(map$^i$);
let M$^i_{seedreply}$ = SeedReply($i$, H$^i$);
nreplies$^i$ = nreplies$^i+1$;
replies$^i$[nreplies$^i$] = (H$^i$, map$^i$);
$\forall q \in$ NS$_p$, send($q$, M$^i_{seedreply}$);
end if
\end{lstlisting}
\begin{lstlisting}[caption={Server or peer receiving \textsf{SeedReply($i$,
X$_q$)} from peer $q$}]
if phase$^i$ = SEEDING then
map$^i$ = $\{ q \rightarrow $X$_q \} \oplus$map$^i$;
end if
\end{lstlisting}
\subsection{Phase 3: Pulse}
\begin{lstlisting}[caption=Server at round $i$ (after having waited $T^i$)]
phase$^i$ = IDLE;
let H$^i$ = hash(map$^i$);
let branch$^i$ = $\emptyset$;
branch$^i$[0] = map$^i$;
let S$^i_{pulse}$ = sign($\langle$$i$|seed$^i$|H$^i$$\rangle$, KS$_{priv}$);
let M$^i_{pulse}$ = Pulse($i$, seed$^i$, branch$^i$, S$^i_{pulse}$);
$\forall q \in$ NS$_{server}$, send($q$, M$^i_{pulse}$);
\end{lstlisting}
\begin{lstlisting}[caption={Peer $p$ receiving \textsf{Pulse($i$, seed$^i$, branch$^i$, S$^i_{pulse}$)}}]
if
verify(S$^i_{pulse}$, $\langle$$i$|seed$^i$|hash(branch$^i$[0])$\rangle$,
KS$_{pub}$) then
phase$^i$ = IDLE;
let level = length(branch$^i$)-1;
if
$\exists$ {$p$ $\rightarrow$ H$^i$} $\in$ branch$^i$[level] and
$\exists\; n\; |$replies[$n$] = (H$^i$, oldmap$^i$) and
included$^i < n$ and
$\forall\; n\in$[1..level], hash(branch$^i$[n]) $\in$ branch$^i$[n-1]
then
branch$^i$[level+1] = oldmap$^i$;
let M$^i_{pulse}$ = Pulse($i$, seed$^i$, branch'$^i$, S$^i_{pulse}$);
History[$i$] = ($i$, seed$^i$, branch'$^i$, S$^i_p$, S$^i_{pulse}$);
included$^i$ = $n$;
$\forall q \in$ NS$_p$, send($q$, M$^i_{pulse}$);
end if
end if
\end{lstlisting}
\subsection{Challenges}
\begin{lstlisting}[caption=Peer $p$ sending to $q$ his availability over the last $N_t$ rounds]
let bits$^i$ = new bitfield[$N_t$];
for $x$ in [1..$N_t$]
if History[$i-N_t+x$] = $\emptyset$ then
bits$^i$[$x$] := 0;
else
bits$^i$[$x$] := 1;
end if
end for
let M$^i_{avail}$ = Availability($i$, bits);
send($q$, M$^i_{avail}$);
\end{lstlisting}
\begin{lstlisting}[caption={Peer $p$ sending to $q$ \textsf{Challenge($i$)}}]
challenges[$q$] = challenges[$q$]$\oplus${$i\rightarrow$ WAITING};
let M$^i_{challenge}$ = Challenge($i$);
send($q$, M$^i_{challenge}$);
\end{lstlisting}
\begin{lstlisting}[caption={Peer $p$ receiving \textsf{Challenge($i$)} from peer
$q$}]
let M$^i_{proof}$ = Proof(History[$i$]);
send($q$, M$^i_{proof}$);
\end{lstlisting}
\newpage
\begin{lstlisting}[caption={Peer $q$ receiving from peer $p$ \textsf{Proof($i$, seed$^i$, branch$^i$, S$^i_p$, S$^i_{pulse}$)}}, label=lst-proof]
let level = length(branch$^i$)-1;
if
$i$ $\in$ challenges[p] and
verify(S$^i_{pulse}$, $\langle$$i$|seed$^i$|hash(branch$^i$[0])$\rangle$, KS$_{pub}$) and
verify(S$^i_p$, $\langle i$|seed$^i\rangle$, K$^p_{pub}$) and
$\forall\; n\in$[1..level], hash(branch$^i$[n]) $\in$ branch$^i$[n-1] and
{$p\rightarrow$hash(S$^i_p$)} $\in$ branch$^i$[level]
then
challenge[$q$] = challenge[$q$]$\oplus${$i\rightarrow$ PROVEN};
else
challenge[$q$] = challenge[$q$]$\oplus${$i\rightarrow$ WRONG};
end if
\end{lstlisting}
\section{Analysis}
The first problem to be adressed is the guarantee given by a proof provided by a
peer in Spec. \ref{lst-proof}.
\begin{thm}
Assuming that:
\begin{itemize}
\item the server is not corrupted
\item peers do not share private keys
\end{itemize}
Then if peer $p$ provides a valid proof of his presence during round $i$, that
is a proof satisfying the following four tests:
\begin{enumerate}
\item \emph{verify(S$^i_{pulse}$,
$\langle$$i$|seed$^i$|hash(branch$^i$[0])$\rangle$, KS$_{pub}$)}
\item \emph{verify(S$^i_p$, $\langle i$|seed$^i\rangle$, K$^p_{pub}$)}
\item \emph{$\forall\; n\in$[1..N], hash(branch$^i$[n]) $\in$
branch$^i$[n-1]}
\item \emph{{$p\rightarrow$hash(S$^i_p$)} $\in$ branch$^i$[N]}
\end{enumerate}
then the holder of the proof has the guarantee that $p$ has been communicating
with at least one other peer during the seeding phase of round $i$ starting at time $t_i$ and ending at time $t_i+T^i$.
\end{thm}
\begin{proof}
Let ($i$, seed$^i$, branch$^i$, S$^i_p$, S$^i_{pulse}$) be the proof provided by peer $p$.
\paragraph{First step: S$^i_{p}$ has been computed by $p$ after
time $t_i$}
Indeed, with test 2 we have the guarantee that S$^i_{p}$ has been computed
by $p$. Furthermore, at the time of computation $p$ knew the seed
\textsf{seed$^i$}. This seed has been generated randomly by the server at the
beginning of round $i$ : this is guaranteed by test 1 and by the integrity of
the server. Thus the time of computation of S$^i_{p}$ is posterior to $t_i$.
\paragraph{Second step: branch$^i$ has been computed before $t_i+T_i$}
By induction:
\subparagraph{Basis:} Test 1 and the integrity of the server guarantee
that branch$^i$[0] has been computed before $t_i+T_i$ (the server
sends branch$^i$[0] at time $t_i+T_i$).
\subparagraph{Inductive Step:} Let us now assume that branch$^i$[0] up to
branch$^i$[k] have been computed before $t_i+T_i$. We know (test 3)
that $t=$hash(branch$^i$[k+1])$\in$ branch$^i$[k].
Now assume by contraction that $m=$branch$^i$[k+1]) has been computed
after $t_i+T_i$ by some peer $q$. Then given $t$, $q$ has been able to compute
$m$ such that hash($m$)$=t$ which would be a successful first preimage
attack on the hash function.
\paragraph{Conclusion:} Using the first two steps and test 4, we now have the
guarantee that S$^i_{p}$ has been computed by $p$ after $t_i$ and transmitted
before $t_i+T^i$. Thus $p$ has been communicating with some peer during round
$i$.
\end{proof}
\begin{rem}
Unfortunately we have no guarantee that peer $p$ has been respecting the
protocol at all. For example he could have just received see$^i$ from a
colluding peer $q$, computed and sent back S$^i_{p}$ to $q$ who would have
inserted S$^i_{p}$ in the branch himself.
\end{rem}
\end{document}
|