diff options
| author | Zaran <zaran.krleza@gmail.com> | 2012-05-08 01:17:06 -0700 |
|---|---|---|
| committer | Zaran <zaran.krleza@gmail.com> | 2012-05-08 01:17:06 -0700 |
| commit | 12f808b886d79607e5db7950525dc4804718f44d (patch) | |
| tree | f238004d51ac765571f4144c5c43004fe46b13cc | |
| parent | b9009643837155c299d005178ecaf6cecd0c176e (diff) | |
| download | recommendation-12f808b886d79607e5db7950525dc4804718f44d.tar.gz | |
Shapley value part
| -rw-r--r-- | slides.tex | 37 |
1 files changed, 33 insertions, 4 deletions
@@ -8,8 +8,7 @@ \usepackage{tikz} \usetheme{Boadilla} \usecolortheme{beaver} -\title[Data monetization]{Data monetization: what is the value of your -data?} +\title[Data monetization]{Data monetization: pricing user data with the Shapley Value} \author{Thibaut \textsc{Horel}} \institute[Technicolor]{Work with {\greektext Στρατής \textsc{Ιωαννίδης}}} \setbeamercovered{transparent} @@ -48,18 +47,48 @@ data?} \section{Shapley value} \begin{frame}{Individual value} + \begin{itemize} + \item $S$ the set of players, a subset $S'\subset S$ is a \alert{coalition} + \item $V: \mathcal{P}(S)\to \mathbf{R}$ the \alert{value} function: + \begin{itemize} + \item $V(S')$ is the value of the coalition $S'$ + \item $V(\emptyset) = 0$ + \end{itemize} + \end{itemize} + \alert{Question:} How to split the value of a subset across all its constituents? + + \alert{Goal:} design a function $\phi_i(S',V)$, the value of player $i$ in $S'$ + + \begin{itemize} + \visible<2->{\item $\phi_i(S',V) = V(\{i\})$?} \visible<3->{``The whole is greater than the sum of its parts'' + $$V(S')\neq \sum_{i\in S'} V(\{i\})$$} + \visible<4->{\item $\phi_i(S',V) = V(S') - V(S'\setminus\{i\})$: the \alert{marginal contribution}?} \visible<5->{depends on the time the player joins the coalition} + \end{itemize} \end{frame} \begin{frame}{Axioms} + \begin{description} + \item[Efficiency:] The whole value must be split + $$V(S) = \sum_{i\in S} \phi_i(S,V)$$ + \item[Symmetry:] Equal pay for equal contribution + + \alert{if} $\forall S'\subset S\setminus\{i,j\}, V(S'\cup\{i\}) = V(S'\cup\{j\})$ + \alert{then} $\phi_i(S,V) = \phi_j(S,V)$ + \item[Fairness:] $i$'s contribution to $j$ equals $j$'s contribution to $i$ + $$\phi_i(S,V) - \phi_i(S\setminus\{j\}) = \phi_j(S,V)- \phi_j(S\setminus\{i\})$$ + \end{description} \end{frame} -\begin{frame}{The solution} +\begin{frame}{Solution: the Shapley Value} + \begin{theorem}[Shapley, 1953] + + \end{theorem} \end{frame} -\begin{frame}{How to use the Shapley Value} +\begin{frame}{Properties} \end{frame} |
