diff options
| author | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2012-11-04 18:01:07 -0800 |
|---|---|---|
| committer | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2012-11-04 18:01:07 -0800 |
| commit | 142e81976a24f34423f405172cf45201e481a041 (patch) | |
| tree | 60f26439bf5eca19eb2cc973d11b8b4d9621f48f | |
| parent | 36e95cddab11a42e9e2893e534d2f74aed76b876 (diff) | |
| download | recommendation-142e81976a24f34423f405172cf45201e481a041.tar.gz | |
marginal contrib
| -rw-r--r-- | main.tex | 4 |
1 files changed, 2 insertions, 2 deletions
@@ -498,9 +498,9 @@ For all $\lambda\in[0,1]^{n},$ - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}} P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S) \end{multline*} - Finally, the marginal contribution of $i$ to + By the Sherman-Morisson formula, the marginal contribution of $i$ to $S$ is - $ \Delta_i V(S)\defeq V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \mu \T{x_i} A(S)^{-1}x_i\right)$. + $ V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \T{x_i} A(S)^{-1}x_i\right)$. Using this, \begin{displaymath} \partial_i F_\mathcal{N}(\lambda) = |
