summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2012-10-22 17:17:19 -0700
committerThibaut Horel <thibaut.horel@gmail.com>2012-10-22 17:17:19 -0700
commit1d83a5bd323d5d420d16ab6531b76c7684fb16e7 (patch)
tree7a622396075b003c932df45b416e7864b8ab0016
parent6dd21a1503ca480736d7bd476d2000eb7ac72858 (diff)
downloadrecommendation-1d83a5bd323d5d420d16ab6531b76c7684fb16e7.tar.gz
Proof of lemma 3 (bound on the relaxations of the value function)
-rw-r--r--proof.tex137
1 files changed, 135 insertions, 2 deletions
diff --git a/proof.tex b/proof.tex
index cbfa759..a26c191 100644
--- a/proof.tex
+++ b/proof.tex
@@ -104,6 +104,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
& = \log\det \mathbb{E}_{S\sim P_\mathcal{N}(S,\lambda)}\big[X(S)\big]\\
& = \log\det\left(\sum_{S\subset N}
P_\mathcal{N}(S,\lambda)X(S)\right)\\
+ & = \log\det \tilde{X}(\lambda)\\
& = \log\det\left(I_d
+ \frac{\kappa}{\sigma^2}\sum_{i\in\mathcal{N}}
\lambda_ix_ix_i^*\right)
@@ -181,13 +182,145 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\end{proof}
\begin{lemma}
- There exists $C>0$ such that:
+ The following inequality holds:
\begin{displaymath}
- \forall\lambda\in[0,1]^n,\; C\,L_\mathcal{N}(\lambda)\leq
+ \forall\lambda\in[0,1]^n,\;
+ \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
+ \,L_\mathcal{N}(\lambda)\leq
F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda)
\end{displaymath}
\end{lemma}
+\begin{proof}
+
+ We will prove that:
+ \begin{displaymath}
+ \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
+ \end{displaymath}
+ is a lower bound of the ratio $\partial_i F_\mathcal{N}(\lambda)/\partial_i
+ L_\mathcal{N}(\lambda)$.
+
+ This will be enough to conclude, by observing that:
+ \begin{displaymath}
+ \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
+ \sim_{\lambda\rightarrow 0}
+ \frac{\sum_{i\in S}\partial_i F_\mathcal{N}(0)}{\sum_{i\in S}\partial_i L_\mathcal{N}(0)}
+ \end{displaymath}
+ and that an interior critical point of the ratio
+ $F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$ is defined by:
+ \begin{displaymath}
+ \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
+ = \frac{\partial_i F_\mathcal{N}(\lambda)}{\partial_i
+ L_\mathcal{N}(\lambda)}
+ \end{displaymath}
+
+ Let us start by computing the derivatives of $F_\mathcal{N}$ and
+ $L_\mathcal{N}$ with respect to
+ the $i$-th component.
+
+ For $F$, it suffices to look at the derivative of
+ $P_\mathcal{N}(S,\lambda)$:
+ \begin{displaymath}
+ \partial_i P_\mathcal{N}(S,\lambda) = \left\{
+ \begin{aligned}
+ & P_{\mathcal{N}\setminus\{i\}}(S\setminus\{i\},\lambda)\;\textrm{if}\; i\in S \\
+ & - P_{\mathcal{N}\setminus\{i\}}(S,\lambda)\;\textrm{if}\;
+ i\in \mathcal{N}\setminus S \\
+ \end{aligned}\right.
+ \end{displaymath}
+
+ Hence:
+ \begin{multline*}
+ \partial_i F_\mathcal{N} =
+ \sum_{\substack{S\subset\mathcal{N}\\ i\in S}}
+ P_{\mathcal{N}\setminus\{i\}}(S\setminus\{i\},\lambda)V(S)\\
+ - \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
+ P_{\mathcal{N}\setminus\{i\}}(S,\lambda)V(S)\\
+ \end{multline*}
+
+ Now, using that every $S$ such that $i\in S$ can be uniquely written as
+ $S'\cup\{i\}$, we can write:
+ \begin{multline*}
+ \partial_i F_\mathcal{N} =
+ \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ P_{\mathcal{N}\setminus\{i\}}(S,\lambda)V(S\cup\{i\})\\
+ - \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
+ P_{\mathcal{N}\setminus\{i\}}(S,\lambda)V(S)\\
+ \end{multline*}
+
+ Finally, by using the expression for the marginal contribution of $i$ to
+ $S$:
+ \begin{displaymath}
+ \partial_i F_\mathcal{N}(\lambda) =
+ \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ P_{\mathcal{N}\setminus\{i\}}(S,\lambda)
+ \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)
+ \end{displaymath}
+
+ The computation of the derivative of $L_\mathcal{N}$ uses standard matrix
+ calculus and gives:
+ \begin{displaymath}
+ \partial_i L_\mathcal{N}(\lambda)
+ = \frac{\kappa}{\sigma^2}x_i^* \tilde{X}(\lambda)^{-1}x_i
+ \end{displaymath}
+
+ Using the following inequalities:
+ \begin{gather*}
+ P_{\mathcal{N}\setminus\{i\}}(S,\lambda) \geq
+ P_\mathcal{N}(S,\lambda)\\
+ X(S)^{-1} \geq X(S\cup\{i\})^{-1}\\
+ P_\mathcal{N}(S\cup\{i\},\lambda)\geq P_\mathcal{N}(S,\lambda)
+ \end{gather*}
+ we get:
+ \begin{align*}
+ \partial_i F_\mathcal{N}(\lambda)
+ & \geq \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ P_\mathcal{N}(S,\lambda)
+ \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\
+ & \geq \frac{1}{2}
+ \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ P_\mathcal{N}(S,\lambda)
+ \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\
+ &\hspace{-3.5em}+\frac{1}{2}
+ \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ P_\mathcal{N}(S\cup\{i\},\lambda)
+ \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S\cup\{i\})^{-1}x_i\Big)\\
+ &\geq \frac{1}{2}
+ \sum_{S\subset\mathcal{N}}
+ P_\mathcal{N}(S,\lambda)
+ \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\
+ \end{align*}
+
+ Using that $X(S)\geq I_d$ we get that:
+ \begin{displaymath}
+ \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i \leq \frac{\kappa}{\sigma^2}
+ \end{displaymath}
+
+ Moreover:
+ \begin{displaymath}
+ \forall x\leq\frac{\kappa}{\sigma^2},\; \log(1+x)\geq
+ \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{\frac{\kappa}{\sigma^2}} x
+ \end{displaymath}
+
+ Hence:
+ \begin{displaymath}
+ \partial_i F_\mathcal{N}(\lambda) \geq
+ \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
+ x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}(S,\lambda)X(S)^{-1}\bigg)x_i
+ \end{displaymath}
+
+ Finally, using that the inverse is a matrix convex function over symmetric
+ positive definite matrices:
+ \begin{align*}
+ \partial_i F_\mathcal{N}(\lambda) &\geq
+ \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
+ x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}(S,\lambda)X(S)\bigg)^{-1}x_i\\
+ & \geq \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
+ \partial_i L_\mathcal{N}(\lambda)
+ \end{align*}
+
+\end{proof}
+
\begin{lemma}
\begin{displaymath}
OPT(L_\mathcal{N}, B) \leq \frac{1}{C}OPT(V,\mathcal{N},B)