diff options
| author | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-03-03 21:32:23 -0800 |
|---|---|---|
| committer | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-03-03 21:32:23 -0800 |
| commit | 2c022bdaaba14864c82aeae51eba5821b75dc506 (patch) | |
| tree | 8f5693aa9a9b05196984277495ba53f340a284e2 | |
| parent | b6a88dc29d0a5a0598c68666408c6197fbc6fe0e (diff) | |
| download | recommendation-2c022bdaaba14864c82aeae51eba5821b75dc506.tar.gz | |
done sun night
| -rw-r--r-- | slides/BudgetFeasibleExperimentalDesign.tex | 91 |
1 files changed, 84 insertions, 7 deletions
diff --git a/slides/BudgetFeasibleExperimentalDesign.tex b/slides/BudgetFeasibleExperimentalDesign.tex index ca60e04..98de9c2 100644 --- a/slides/BudgetFeasibleExperimentalDesign.tex +++ b/slides/BudgetFeasibleExperimentalDesign.tex @@ -126,7 +126,7 @@ \begin{center} \begin{overprint} - \onslide<1>\begin{center}$N$ users (``experiment subjects''), $[N]\equiv \{1,\ldots,N\}$ \end{center} + \onslide<1>\begin{center}$N$ ``experiment subjects'', $[N]\equiv \{1,\ldots,N\}$ \end{center} \onslide<2> \begin{center} $x_i\in \reals^d$: public features (\eg, age, gender, height, \etc) @@ -528,7 +528,7 @@ Subjects \alert{do not lie} about $y_i$ (tamper-proof experiments).} \end{frame} -\begin{frame}{Main Results} +\begin{frame}{Our Main Results} \begin{theorem}<2-> There exists deterministic, budget feasible, individually rational and truthful mechanism for EDP which runs in polynomial time. Its @@ -737,13 +737,62 @@ Key idea:\\ Replace $OPT$ with a \alert{relaxation $L^*$}:\pause \end{frame} \end{comment} -\section{Extensions \& Generalization} +\section{Generalization} \begin{frame}{Outline} \tableofcontents[currentsection] \end{frame} -\begin{frame}{Generalization} +\begin{frame}{Towards More General ML Tasks} + \begin{center} + \includegraphics<1>[scale=0.4]{st2.pdf} + \includegraphics<2>[scale=0.4]{st3.pdf} + \includegraphics<3>[scale=0.4]{st4.pdf} + \includegraphics<4-5>[scale=0.4]{st25.pdf} + \includegraphics<6->[scale=0.4]{st26.pdf} + \end{center} + + \begin{overprint} + \onslide<1> + \begin{center}$N$ experiment subjects\end{center} + \onslide<2> + \begin{center} + $x_i\in \Omega$: public features + \end{center} + \onslide<3> + \begin{center} + $y_i\in \reals$: private data + \end{center} + \onslide<4-5> + \begin{center} + \textbf{Hypothesis.} There exists $h:\Omega\to \reals$ s.t. + % \begin{displaymath} + $y_i = h(x_i) + \varepsilon_i,$ %\quad + where $\varepsilon_i$ are independent. + \visible<5>{Examples: Logistic Regression, LDA, SVMs, \etc} + % \end{displaymath} + \end{center} +%$$y_i = \beta^Tx_i + \varepsilon_i, i=1,\ldots, N$$ + %\end{center} + \onslide<6> + \begin{center} + Experimenter {\tt E} wishes to learn $h$, and has a prior distribution over $$\mathcal{H}=\{\text{mappings from }\Omega\text{ to }\reals\}.$$ + \end{center} + \onslide<7->\begin{center} +\vspace*{-0.5cm} +% \begin{block} +%{Value function: Information gain} + \begin{displaymath} + V(S) = H(h) - H(h\mid y_i,i\in S),\quad S\subseteq[N] + \end{displaymath} + % \end{block} + \visible<8>{$V$ is submodular! [Krause and Guestrin 2009]} + \end{center} + \end{overprint} + +\end{frame} + +\begin{comment} \begin{itemize} \item Generative model: $y_i = f(x_i) + \varepsilon_i,\;i\in\mathcal{A}$ \pause @@ -769,18 +818,46 @@ Key idea:\\ Replace $OPT$ with a \alert{relaxation $L^*$}:\pause $V$ is \alert{submodular} $\Rightarrow$ randomized budget feasible mechanism \end{frame} +\end{comment} \begin{frame}{Conclusion} \begin{itemize} - \item Experimental design + Auction theory = powerful framework + \item Experimental design + Budget Feasible Mechanisms \vspace{1cm} \pause - \item deterministic mechanism for the general case? other learning tasks? + \item Deterministic mechanism for other ML Tasks? General submodular functions? \vspace{1cm} \pause - \item approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$} + \item Approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$} \end{itemize} \end{frame} +\begin{frame}{} +\vspace{\stretch{1}} +\begin{center} +Thank you! +\end{center} +\vspace{\stretch{1}} +\end{frame} + +\begin{frame}{Non-Homotropic Prior} +Recall that: +\begin{align*} +V(S)&=H(\beta)-H(\beta\mid y_i,i\in S)\\ +& = \frac{1}{2}\log\det (R^{-1}+\sum_{i\in S}x_ix_i^T) +\end{align*} +What if $R\neq I$? +\begin{theorem} + There exists a truthful, poly-time, and budget feasible mechanism for the objective + function $V$ above. Furthermore, + the algorithm computes a set $S^*$ such that: + \begin{displaymath} + OPT \leq + \frac{5e-1}{e-1}\frac{2}{\mu\log(1+1/\mu)}V(S^*) + 5.1 +\end{displaymath} +where $\mu$ is the largest eigenvalue of $R$. +\end{theorem} +\end{frame} + \end{document} |
