diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-24 08:58:16 -0700 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2012-10-24 08:58:16 -0700 |
| commit | ae40e0f8d6c5f2a8511722393a3f253a0cfc87b0 (patch) | |
| tree | 270c680ce5385bb853ad019f3466efac64be355d | |
| parent | e92f1202263bcbb19a83cce559cf0fb53e3537bd (diff) | |
| download | recommendation-ae40e0f8d6c5f2a8511722393a3f253a0cfc87b0.tar.gz | |
Rewrite in terms of the regularization factor (\kappa/\sigma^2) which is denoted by \mu
| -rw-r--r-- | proof.tex | 47 |
1 files changed, 25 insertions, 22 deletions
@@ -32,6 +32,7 @@ \item $\varepsilon_i \sim \mathcal{N}(0,\sigma^2)$, $(\varepsilon_i)_{i\in \mathcal{N}}$ are mutually independent. \item prior knowledge of $\beta$: $\beta\sim\mathcal{N}(0,\kappa I_d)$ + \item $\mu = \frac{\kappa}{\sigma^2}$ is the regularization factor. \end{itemize} \end{itemize} @@ -42,7 +43,7 @@ \begin{align*} \forall S\subset\mathcal{N},\; V(S) & = \frac{1}{2}\log\det\left(I_d - + \frac{\kappa}{\sigma^2}\sum_{i\in S} x_ix_i^*\right)\\ + + \mu\sum_{i\in S} x_ix_i^*\right)\\ & = \frac{1}{2}\log\det X(S) \end{align*} \item each user $i$ has a cost $c_i$ @@ -106,7 +107,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: P_\mathcal{N}(S,\lambda)X(S)\right)\\ & = \log\det \tilde{X}(\lambda)\\ & = \log\det\left(I_d - + \frac{\kappa}{\sigma^2}\sum_{i\in\mathcal{N}} + + \mu\sum_{i\in\mathcal{N}} \lambda_ix_ix_i^*\right) \end{align*} \end{itemize} @@ -185,7 +186,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: The following inequality holds: \begin{displaymath} \forall\lambda\in[0,1]^n,\; - \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}} + \frac{\log\big(1+\mu\big)}{2\mu} \,L_\mathcal{N}(\lambda)\leq F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda) \end{displaymath} @@ -195,7 +196,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: We will prove that: \begin{displaymath} - \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}} + \frac{\log\big(1+\mu\big)}{2\mu} \end{displaymath} is a lower bound of the ratio $\partial_i F_\mathcal{N}(\lambda)/\partial_i L_\mathcal{N}(\lambda)$. @@ -255,14 +256,14 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \partial_i F_\mathcal{N}(\lambda) = \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_{\mathcal{N}\setminus\{i\}}(S,\lambda) - \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big) + \log\Big(1 + \mu x_i^*X(S)^{-1}x_i\Big) \end{displaymath} The computation of the derivative of $L_\mathcal{N}$ uses standard matrix calculus and gives: \begin{displaymath} \partial_i L_\mathcal{N}(\lambda) - = \frac{\kappa}{\sigma^2}x_i^* \tilde{X}(\lambda)^{-1}x_i + = \mu x_i^* \tilde{X}(\lambda)^{-1}x_i \end{displaymath} Using the following inequalities: @@ -277,36 +278,36 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \partial_i F_\mathcal{N}(\lambda) & \geq \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}(S,\lambda) - \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\ + \log\Big(1 + \mu x_i^*X(S)^{-1}x_i\Big)\\ & \geq \frac{1}{2} \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}(S,\lambda) - \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\ + \log\Big(1 + \mu x_i^*X(S)^{-1}x_i\Big)\\ &\hspace{-3.5em}+\frac{1}{2} \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}(S\cup\{i\},\lambda) - \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S\cup\{i\})^{-1}x_i\Big)\\ + \log\Big(1 + \mu x_i^*X(S\cup\{i\})^{-1}x_i\Big)\\ &\geq \frac{1}{2} \sum_{S\subset\mathcal{N}} P_\mathcal{N}(S,\lambda) - \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\ + \log\Big(1 + \mu x_i^*X(S)^{-1}x_i\Big)\\ \end{align*} Using that $X(S)\geq I_d$ we get that: \begin{displaymath} - \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i \leq \frac{\kappa}{\sigma^2} + \mu x_i^*X(S)^{-1}x_i \leq \mu \end{displaymath} Moreover: \begin{displaymath} - \forall x\leq\frac{\kappa}{\sigma^2},\; \log(1+x)\geq - \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{\frac{\kappa}{\sigma^2}} x + \forall x\leq\mu,\; \log(1+x)\geq + \frac{\log\big(1+\mu\big)}{\mu} x \end{displaymath} Hence: \begin{displaymath} \partial_i F_\mathcal{N}(\lambda) \geq - \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}} + \frac{\log\big(1+\mu\big)}{2\mu} x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}(S,\lambda)X(S)^{-1}\bigg)x_i \end{displaymath} @@ -314,16 +315,18 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: positive definite matrices: \begin{align*} \partial_i F_\mathcal{N}(\lambda) &\geq - \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}} + \frac{\log\big(1+\mu\big)}{2\mu} x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}(S,\lambda)X(S)\bigg)^{-1}x_i\\ - & \geq \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}} + & \geq \frac{\log\big(1+\mu\big)}{2\mu} \partial_i L_\mathcal{N}(\lambda) \end{align*} \end{proof} \begin{lemma} + Let us denote by $C_\mu$ the constant of which appears in the bound of the + previous lemma: $C_\mu = \frac{\log(1+\mu)}{2\mu}$, then: \begin{displaymath} - OPT(L_\mathcal{N}, B) \leq \frac{1}{C_\kappa}\big(2 OPT(V,\mathcal{N},B) + OPT(L_\mathcal{N}, B) \leq \frac{1}{C_\mu}\big(2 OPT(V,\mathcal{N},B) + \max_{i\in\mathcal{N}}V(i)\big) \end{displaymath} \end{lemma} @@ -334,7 +337,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most one fractional component such that: \begin{equation}\label{eq:e1} - L_\mathcal{N}(\lambda^*) \leq \frac{1}{C_\kappa} + L_\mathcal{N}(\lambda^*) \leq \frac{1}{C_\mu} F_\mathcal{N}(\bar{\lambda}) \end{equation} @@ -418,16 +421,16 @@ The mechanism is budget feasible. If the condition of the algorithm does not hold: \begin{align*} - V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C\cdot C_\kappa} + V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C\cdot C_\mu} \big(2 OPT(V,\mathcal{N}, B) + V(i^*)\big)\\ - & \leq \frac{1}{C\cdot C_\kappa}\left(\frac{2e}{e-1}\big(3 V(S_M) + & \leq \frac{1}{C\cdot C_\mu}\left(\frac{2e}{e-1}\big(3 V(S_M) + 2 V(i^*)\big) + V(i^*)\right) \end{align*} Thus: \begin{align*} - V(i^*) \leq \frac{6e}{C\cdot C_\kappa(e-1)- 5e + 1} V(S_M) + V(i^*) \leq \frac{6e}{C\cdot C_\mu(e-1)- 5e + 1} V(S_M) \end{align*} Finally, using again that: @@ -438,7 +441,7 @@ The mechanism is budget feasible. We get: \begin{displaymath} OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot - C_\kappa(e-1) -5e +1}\right) V(S_M) + C_\mu(e-1) -5e +1}\right) V(S_M) \end{displaymath} \end{proof} |
