summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2012-10-24 08:58:16 -0700
committerThibaut Horel <thibaut.horel@gmail.com>2012-10-24 08:58:16 -0700
commitae40e0f8d6c5f2a8511722393a3f253a0cfc87b0 (patch)
tree270c680ce5385bb853ad019f3466efac64be355d
parente92f1202263bcbb19a83cce559cf0fb53e3537bd (diff)
downloadrecommendation-ae40e0f8d6c5f2a8511722393a3f253a0cfc87b0.tar.gz
Rewrite in terms of the regularization factor (\kappa/\sigma^2) which is denoted by \mu
-rw-r--r--proof.tex47
1 files changed, 25 insertions, 22 deletions
diff --git a/proof.tex b/proof.tex
index af8bbb2..7b2088f 100644
--- a/proof.tex
+++ b/proof.tex
@@ -32,6 +32,7 @@
\item $\varepsilon_i \sim \mathcal{N}(0,\sigma^2)$,
$(\varepsilon_i)_{i\in \mathcal{N}}$ are mutually independent.
\item prior knowledge of $\beta$: $\beta\sim\mathcal{N}(0,\kappa I_d)$
+ \item $\mu = \frac{\kappa}{\sigma^2}$ is the regularization factor.
\end{itemize}
\end{itemize}
@@ -42,7 +43,7 @@
\begin{align*}
\forall S\subset\mathcal{N},\; V(S)
& = \frac{1}{2}\log\det\left(I_d
- + \frac{\kappa}{\sigma^2}\sum_{i\in S} x_ix_i^*\right)\\
+ + \mu\sum_{i\in S} x_ix_i^*\right)\\
& = \frac{1}{2}\log\det X(S)
\end{align*}
\item each user $i$ has a cost $c_i$
@@ -106,7 +107,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
P_\mathcal{N}(S,\lambda)X(S)\right)\\
& = \log\det \tilde{X}(\lambda)\\
& = \log\det\left(I_d
- + \frac{\kappa}{\sigma^2}\sum_{i\in\mathcal{N}}
+ + \mu\sum_{i\in\mathcal{N}}
\lambda_ix_ix_i^*\right)
\end{align*}
\end{itemize}
@@ -185,7 +186,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
The following inequality holds:
\begin{displaymath}
\forall\lambda\in[0,1]^n,\;
- \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
+ \frac{\log\big(1+\mu\big)}{2\mu}
\,L_\mathcal{N}(\lambda)\leq
F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda)
\end{displaymath}
@@ -195,7 +196,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
We will prove that:
\begin{displaymath}
- \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
+ \frac{\log\big(1+\mu\big)}{2\mu}
\end{displaymath}
is a lower bound of the ratio $\partial_i F_\mathcal{N}(\lambda)/\partial_i
L_\mathcal{N}(\lambda)$.
@@ -255,14 +256,14 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\partial_i F_\mathcal{N}(\lambda) =
\sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}(S,\lambda)
- \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)
+ \log\Big(1 + \mu x_i^*X(S)^{-1}x_i\Big)
\end{displaymath}
The computation of the derivative of $L_\mathcal{N}$ uses standard matrix
calculus and gives:
\begin{displaymath}
\partial_i L_\mathcal{N}(\lambda)
- = \frac{\kappa}{\sigma^2}x_i^* \tilde{X}(\lambda)^{-1}x_i
+ = \mu x_i^* \tilde{X}(\lambda)^{-1}x_i
\end{displaymath}
Using the following inequalities:
@@ -277,36 +278,36 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\partial_i F_\mathcal{N}(\lambda)
& \geq \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}(S,\lambda)
- \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\
+ \log\Big(1 + \mu x_i^*X(S)^{-1}x_i\Big)\\
& \geq \frac{1}{2}
\sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}(S,\lambda)
- \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\
+ \log\Big(1 + \mu x_i^*X(S)^{-1}x_i\Big)\\
&\hspace{-3.5em}+\frac{1}{2}
\sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}(S\cup\{i\},\lambda)
- \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S\cup\{i\})^{-1}x_i\Big)\\
+ \log\Big(1 + \mu x_i^*X(S\cup\{i\})^{-1}x_i\Big)\\
&\geq \frac{1}{2}
\sum_{S\subset\mathcal{N}}
P_\mathcal{N}(S,\lambda)
- \log\Big(1 + \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i\Big)\\
+ \log\Big(1 + \mu x_i^*X(S)^{-1}x_i\Big)\\
\end{align*}
Using that $X(S)\geq I_d$ we get that:
\begin{displaymath}
- \frac{\kappa}{\sigma^2}x_i^*X(S)^{-1}x_i \leq \frac{\kappa}{\sigma^2}
+ \mu x_i^*X(S)^{-1}x_i \leq \mu
\end{displaymath}
Moreover:
\begin{displaymath}
- \forall x\leq\frac{\kappa}{\sigma^2},\; \log(1+x)\geq
- \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{\frac{\kappa}{\sigma^2}} x
+ \forall x\leq\mu,\; \log(1+x)\geq
+ \frac{\log\big(1+\mu\big)}{\mu} x
\end{displaymath}
Hence:
\begin{displaymath}
\partial_i F_\mathcal{N}(\lambda) \geq
- \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
+ \frac{\log\big(1+\mu\big)}{2\mu}
x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}(S,\lambda)X(S)^{-1}\bigg)x_i
\end{displaymath}
@@ -314,16 +315,18 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
positive definite matrices:
\begin{align*}
\partial_i F_\mathcal{N}(\lambda) &\geq
- \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
+ \frac{\log\big(1+\mu\big)}{2\mu}
x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}(S,\lambda)X(S)\bigg)^{-1}x_i\\
- & \geq \frac{\log\big(1+\frac{\kappa}{\sigma^2}\big)}{2\frac{\kappa}{\sigma^2}}
+ & \geq \frac{\log\big(1+\mu\big)}{2\mu}
\partial_i L_\mathcal{N}(\lambda)
\end{align*}
\end{proof}
\begin{lemma}
+ Let us denote by $C_\mu$ the constant of which appears in the bound of the
+ previous lemma: $C_\mu = \frac{\log(1+\mu)}{2\mu}$, then:
\begin{displaymath}
- OPT(L_\mathcal{N}, B) \leq \frac{1}{C_\kappa}\big(2 OPT(V,\mathcal{N},B)
+ OPT(L_\mathcal{N}, B) \leq \frac{1}{C_\mu}\big(2 OPT(V,\mathcal{N},B)
+ \max_{i\in\mathcal{N}}V(i)\big)
\end{displaymath}
\end{lemma}
@@ -334,7 +337,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
one fractional component such that:
\begin{equation}\label{eq:e1}
- L_\mathcal{N}(\lambda^*) \leq \frac{1}{C_\kappa}
+ L_\mathcal{N}(\lambda^*) \leq \frac{1}{C_\mu}
F_\mathcal{N}(\bar{\lambda})
\end{equation}
@@ -418,16 +421,16 @@ The mechanism is budget feasible.
If the condition of the algorithm does not hold:
\begin{align*}
- V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C\cdot C_\kappa}
+ V(i^*) & \leq \frac{1}{C}L(x^*) \leq \frac{1}{C\cdot C_\mu}
\big(2 OPT(V,\mathcal{N}, B) + V(i^*)\big)\\
- & \leq \frac{1}{C\cdot C_\kappa}\left(\frac{2e}{e-1}\big(3 V(S_M)
+ & \leq \frac{1}{C\cdot C_\mu}\left(\frac{2e}{e-1}\big(3 V(S_M)
+ 2 V(i^*)\big)
+ V(i^*)\right)
\end{align*}
Thus:
\begin{align*}
- V(i^*) \leq \frac{6e}{C\cdot C_\kappa(e-1)- 5e + 1} V(S_M)
+ V(i^*) \leq \frac{6e}{C\cdot C_\mu(e-1)- 5e + 1} V(S_M)
\end{align*}
Finally, using again that:
@@ -438,7 +441,7 @@ The mechanism is budget feasible.
We get:
\begin{displaymath}
OPT(V, \mathcal{N}, B) \leq \frac{e}{e-1}\left( 3 + \frac{12e}{C\cdot
- C_\kappa(e-1) -5e +1}\right) V(S_M)
+ C_\mu(e-1) -5e +1}\right) V(S_M)
\end{displaymath}
\end{proof}