summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2013-06-28 18:04:04 +0200
committerThibaut Horel <thibaut.horel@gmail.com>2013-06-28 18:04:04 +0200
commitc569d13f707706c49aea4cdd3635a0f73ed38f86 (patch)
tree3b074a8bc400ea8ac7c1611f7b6098a58bb9b893
parent07d48e21fb6fc62b1a85b9d80c25560529a9a0b5 (diff)
downloadrecommendation-c569d13f707706c49aea4cdd3635a0f73ed38f86.tar.gz
Fixing notations in the proofs
-rw-r--r--appendix.tex81
1 files changed, 17 insertions, 64 deletions
diff --git a/appendix.tex b/appendix.tex
index dd643d7..b757e8e 100644
--- a/appendix.tex
+++ b/appendix.tex
@@ -254,54 +254,6 @@ one fractional component such that
\end{equation}
Together, \eqref{eq:e1} and \eqref{eq:e2} imply the proposition.\qedhere
-\begin{proof}[Proof of Lemma~\ref{lemma:derivative-bounds}]
- Let us define:
- \begin{displaymath}
- S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
- \quad\mathrm{and}\quad
- S_k \defeq I_d + \sum_{i=1}^k x_i\T{x_i}
- \end{displaymath}
-
- We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since
- $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
- is the right-hand side of the lemma.
-
- For the left-hand side, note that $S(\lambda) \leq S_n$. Hence
- $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$.
-
- Using the Sherman-Morrison formula, for all $k\geq 1$:
- \begin{displaymath}
- \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i
- - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k}
- \end{displaymath}
-
- By the Cauchy-Schwarz inequality:
- \begin{displaymath}
- (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k
- \end{displaymath}
-
- Hence:
- \begin{displaymath}
- \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k}
- \end{displaymath}
-
- But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
- $0\leq a\leq 1$, so:
- \begin{displaymath}
- \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2}
- \end{displaymath}
-
- By induction:
- \begin{displaymath}
- \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
- \end{displaymath}
-
- Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side
- of the lemma's inequality.
-\end{proof}
-
\subsection{Proof of Proposition~\ref{prop:monotonicity}}
The $\log\det$ function is concave and self-concordant (see
@@ -328,47 +280,48 @@ Proposition~\ref{prop:monotonicity}.
\end{lemma}
\begin{proof}
- Let us define:
+ Recall that we had defined:
\begin{displaymath}
- S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
+ \tilde{A}(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
\quad\mathrm{and}\quad
- S_k \defeq I_d + \sum_{i=1}^k x_i\T{x_i}
+ A(S) \defeq I_d + \sum_{i\in S} x_i\T{x_i}
\end{displaymath}
+ Let us also define $A_k\defeq A(\{x_1,\ldots,x_k\})$.
- We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since
- $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
+ We have $\partial_i L(\lambda) = \T{x_i}\tilde{A}(\lambda)^{-1}x_i$. Since
+ $\tilde{A}(\lambda)\succeq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
is the right-hand side of the lemma.
- For the left-hand side, note that $S(\lambda) \leq S_n$. Hence
- $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$.
+ For the left-hand side, note that $\tilde{A}(\lambda) \preceq A_n$. Hence
+ $\partial_iL(\lambda)\geq \T{x_i}A_n^{-1}x_i$.
Using the Sherman-Morrison formula, for all $k\geq 1$:
\begin{displaymath}
- \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i
- - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k}
+ \T{x_i}A_k^{-1} x_i = \T{x_i}A_{k-1}^{-1}x_i
+ - \frac{(\T{x_i}A_{k-1}^{-1}x_k)^2}{1+\T{x_k}A_{k-1}^{-1}x_k}
\end{displaymath}
By the Cauchy-Schwarz inequality:
\begin{displaymath}
- (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k
+ (\T{x_i}A_{k-1}^{-1}x_k)^2 \leq \T{x_i}A_{k-1}^{-1}x_i\;\T{x_k}A_{k-1}^{-1}x_k
\end{displaymath}
Hence:
\begin{displaymath}
- \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k}
+ \T{x_i}A_k^{-1} x_i \geq \T{x_i}A_{k-1}^{-1}x_i
+ - \T{x_i}A_{k-1}^{-1}x_i\frac{\T{x_k}A_{k-1}^{-1}x_k}{1+\T{x_k}A_{k-1}^{-1}x_k}
\end{displaymath}
- But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
+ But $\T{x_k}A_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
$0\leq a\leq 1$, so:
\begin{displaymath}
- \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2}
+ \T{x_i}A_{k}^{-1}x_i \geq \T{x_i}A_{k-1}^{-1}x_i
+ - \frac{1}{2}\T{x_i}A_{k-1}^{-1}x_i\geq \frac{\T{x_i}A_{k-1}^{-1}x_i}{2}
\end{displaymath}
By induction:
\begin{displaymath}
- \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
+ \T{x_i}A_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
\end{displaymath}
Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side