diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2013-02-11 13:09:04 -0800 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2013-02-11 13:09:04 -0800 |
| commit | d9f0b6047520911d5d853565e0588eb5bd463ae0 (patch) | |
| tree | 9e8828c5f58a6bebd3490622fd6efaee439999ec | |
| parent | f884186cb1e840c7b6abd343978b62cbac206cd8 (diff) | |
| download | recommendation-d9f0b6047520911d5d853565e0588eb5bd463ae0.tar.gz | |
Small fixes to sections 4 and 5
| -rw-r--r-- | main.tex | 4 | ||||
| -rw-r--r-- | notes.bib | 24 | ||||
| -rw-r--r-- | proofs.tex | 126 |
3 files changed, 87 insertions, 67 deletions
@@ -151,9 +151,9 @@ We can now state our main result: \varepsilon\\ & \simeq 12.98V(S^*) + \varepsilon \end{align*} - The value of the constant $C$ is given by \eqref{eq:constant} in - Section~\ref{sec:proofofmainthm}. \end{theorem} +The value of the constant $C$ is given by \eqref{eq:constant} in +Section~\ref{sec:proofofmainthm}. \fussy In addition, we prove the following simple lower bound. @@ -619,3 +619,27 @@ year = "2011" bibsource = {DBLP, http://dblp.uni-trier.de} } +@article{sylvester,
+title = "Various proofs of Sylvester's (determinant) identity",
+journal = "Mathematics and Computers in Simulation",
+volume = "42",
+number = "4–6",
+pages = "585 - 593",
+year = "1996",
+note = "<ce:title>Sybolic Computation, New Trends and Developments</ce:title>",
+issn = "0378-4754",
+doi = "10.1016/S0378-4754(96)00035-3",
+url = "http://www.sciencedirect.com/science/article/pii/S0378475496000353",
+author = "Alkiviadis G. Akritas and Evgenia K. Akritas and Genadii I. Malaschonok",
+keywords = "Sylvester's identity",
+keywords = "Polynomial remainder sequence (prs)",
+keywords = "Matrix-triangularization subresultant prs"
+}
+ +@techreport{convexmatrix, + title={Matrix convex functions with applications to weighted centers for semidefinite programming}, + author={Brinkhuis, J. and Luo, Z.Q. and Zhang, S.}, + year={2005}, + institution={Erasmus School of Economics (ESE)} +} + @@ -36,7 +36,7 @@ following lemma which establishes that $OPT'$, the optimal value \eqref{relax} is not too far from $OPT$. \begin{lemma}[Approximation]\label{lemma:relaxation} $ OPT' \leq 2 OPT - + 2\max_{i\in\mathcal{N}}V(i)$ + + 2\max_{i\in\mathcal{N}}V(i)$. \end{lemma} The proof of Lemma~\ref{lemma:relaxation} is our main technical contribution, and can be found in Section \ref{sec:relaxation}. @@ -48,7 +48,7 @@ $S^*$ allocated by the mechanism is such that: \begin{equation} \label{approxbound} OPT \leq \frac{10e\!-\!3 + \sqrt{64e^2\!-\!24e\!+\!9}}{2(e\!-\!1)} V(S^*)\! -+ \! \varepsilon ++ \! \varepsilon . \end{equation} To see this, let $OPT_{-i^*}'$ be the true maximum value of $L$ subject to $\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. Assume @@ -57,53 +57,52 @@ $\tilde{L}-\varepsilon\leq OPT_{-i^*}' \leq \tilde{L}+\varepsilon$ has been computed (Lemma~\ref{lemma:complexity} states that this is computed in time within our complexity guarantee). -If the condition on line 3 of the algorithm holds, then: +If the condition on line 3 of the algorithm holds, then \begin{displaymath} V(i^*) \geq \frac{1}{C}OPT_{-i^*}'-\frac{\varepsilon}{C} \geq - \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C} + \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C} \end{displaymath} as $L$ is a fractional relaxation of $V$. Also, $OPT \leq OPT_{-i^*} + V(i^*)$, -hence: +hence, \begin{equation}\label{eq:bound1} - OPT\leq (1+C)V(i^*) + \varepsilon + OPT\leq (1+C)V(i^*) + \varepsilon. \end{equation} If the condition does not hold, by observing that $OPT'_{-i^*}\leq OPT'$ and -applying Lemma~\ref{lemma:relaxation}, we get: +applying Lemma~\ref{lemma:relaxation}, we get \begin{displaymath} V(i^*) \stackrel{}\leq \frac{1}{C}OPT_{-i^*}' + \frac{\varepsilon}{C} - \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C} + \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}. \end{displaymath} -Applying Lemma~\ref{lemma:greedy-bound}: +Applying Lemma~\ref{lemma:greedy-bound}, \begin{displaymath} V(i^*) \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G) - + 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C} + + 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C}. \end{displaymath} Thus, if $C$ is such that $C(e-1) -6e +2 > 0$, \begin{align*} V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G) - + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2} + + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}. \end{align*} -Finally, using Lemma~\ref{lemma:greedy-bound} again, we get: +Finally, using Lemma~\ref{lemma:greedy-bound} again, we get \begin{equation}\label{eq:bound2} OPT(V, \mathcal{N}, B) \leq \frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}\right) V(S_G) - + \frac{2e\varepsilon}{C(e-1)- 6e + 2} + + \frac{2e\varepsilon}{C(e-1)- 6e + 2}. \end{equation} To minimize the coefficients of $V_{i^*}$ and $V(S_G)$ in \eqref{eq:bound1} -and \eqref{eq:bound2} respectively, we wish to chose for $C=C^*$ such that: +and \eqref{eq:bound2} respectively, we wish to chose $C$ that minimizes \begin{displaymath} - C^* = \argmin_C \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2} - \right)\right) + \right)\right). \end{displaymath} -This equation has two solutions. Only one of those is such that $C(e-1) -6e -+2 \geq 0$. This solution is: +This function has two minima, only one of those is such that $C(e-1) -6e ++2 \geq 0$. This minimum is \begin{equation}\label{eq:constant} - C^* = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)} + C = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}. \end{equation} -For this solution, $\frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon.$ -Placing the expression of $C^*$ in \eqref{eq:bound1} and \eqref{eq:bound2} +For this minimum, $\frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon.$ +Placing the expression of $C$ in \eqref{eq:bound1} and \eqref{eq:bound2} gives the approximation ratio in \eqref{approxbound}, and concludes the proof of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed @@ -241,22 +240,23 @@ For all $\lambda\in[0,1]^{n},$ Let us start by computing the derivatives of $F$ and $L$ with respect to the $i$-th component. - Observe that: + Observe that \begin{displaymath} \partial_i P_\mathcal{N}^\lambda(S) = \left\{ \begin{aligned} - & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\; i\in S \\ + & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\; + i\in S, \\ & - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\; - i\in \mathcal{N}\setminus S \\ + i\in \mathcal{N}\setminus S. \\ \end{aligned}\right. \end{displaymath} - Hence: + Hence, \begin{displaymath} \partial_i F(\lambda) = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}} P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S) - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S) + P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S). \end{displaymath} Now, using that every $S$ such that $i\in S$ can be uniquely written as $S'\cup\{i\}$, we can write: @@ -264,7 +264,7 @@ For all $\lambda\in[0,1]^{n},$ \partial_i F(\lambda) = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\big(V(S\cup\{i\}) - - V(S)\big) + - V(S)\big). \end{displaymath} The marginal contribution of $i$ to $S$ can be written as @@ -276,7 +276,8 @@ V(S\cup \{i\}) - V(S)& = \frac{1}{2}\log\det(I_d \T{X_S}X_S)^{-1}) = \frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i) \end{align*} -where $A(S) =I_d+ \T{X_S}X_S$. +where $A(S) \defeq I_d+ \T{X_S}X_S$, and the last equality follows from the +Sylvester's determinant identity~\cite{sylvester}. % $ V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \T{x_i} A(S)^{-1}x_i\right)$. Using this, \begin{displaymath} @@ -286,43 +287,44 @@ Using this, \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big) \end{displaymath} The computation of the derivative of $L$ uses standard matrix - calculus. Writing $\tilde{A}(\lambda) = I_d+\sum_{i\in - \mathcal{N}}\lambda_ix_i\T{x_i}$: + calculus: writing $\tilde{A}(\lambda) = I_d+\sum_{i\in + \mathcal{N}}\lambda_ix_i\T{x_i}$, \begin{displaymath} \det \tilde{A}(\lambda + h\cdot e_i) = \det\big(\tilde{A}(\lambda) + hx_i\T{x_i}\big) =\det \tilde{A}(\lambda)\big(1+ - h\T{x_i}\tilde{A}(\lambda)^{-1}x_i\big) + h\T{x_i}\tilde{A}(\lambda)^{-1}x_i\big). \end{displaymath} - Hence: + Hence, \begin{displaymath} \log\det\tilde{A}(\lambda + h\cdot e_i)= \log\det\tilde{A}(\lambda) - + h\T{x_i}\tilde{A}(\lambda)^{-1}x_i + o(h) + + h\T{x_i}\tilde{A}(\lambda)^{-1}x_i + o(h), \end{displaymath} - Finally: + which implies \begin{displaymath} \partial_i L(\lambda) - =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i + =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i. \end{displaymath} For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if $A-B$ is positive definite (positive semi-definite). This order allows us to define the notion of a \emph{decreasing} as well as \emph{convex} matrix function, similarly to their real counterparts. With this definition, matrix -inversion is decreasing and convex over symmetric positive definite matrices. +inversion is decreasing and convex over symmetric positive definite +matrices~\cite{convexmatrix}. In particular, \begin{gather*} \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1} \end{gather*} - Observe that: +as $A(S)\leq A(S\cup\{i\})$. Observe that \begin{gather*} \forall S\subseteq\mathcal{N}\setminus\{i\},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq - P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})\\ + P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\}),\\ \forall S\subseteq\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S) - \geq P_\mathcal{N}^\lambda(S) + \geq P_\mathcal{N}^\lambda(S). \end{gather*} - Hence: + Hence, \begin{align*} \partial_i F(\lambda) % & = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\ @@ -337,15 +339,15 @@ In particular, &\geq \frac{1}{4} \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) - \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big) + \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big). \end{align*} Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq \norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$. - Hence: + Hence, \begin{displaymath} \partial_i F(\lambda) \geq \frac{1}{4} - \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i + \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i. \end{displaymath} Finally, using that the inverse is a matrix convex function over symmetric positive definite matrices: @@ -355,7 +357,7 @@ In particular, \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i = \frac{1}{4}\T{x_i}\tilde{A}(\lambda)^{-1}x_i = \frac{1}{2} - \partial_i L(\lambda) + \partial_i L(\lambda). \end{displaymath} Having bound the ratio between the partial derivatives, we now bound the ratio $F(\lambda)/L(\lambda)$ from below. Consider the following cases. @@ -365,7 +367,7 @@ Having bound the ratio between the partial derivatives, we now bound the ratio $ \begin{equation}\label{eq:lhopital} \frac{F(\lambda)}{L(\lambda)} = \frac{\partial_i F(\lambda)}{\partial_i - L(\lambda)} \geq \frac{1}{2} + L(\lambda)} \geq \frac{1}{2}. \end{equation} Second, if the minimum is attained as $\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write: @@ -391,37 +393,33 @@ Having bound the ratio between the partial derivatives, we now bound the ratio $ function $V$. Hence, the ratio is equal to 1 on the vertices. \end{proof} -\begin{proof}[of Lemma~\ref{lemma:relaxation}] -Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that $L(\lambda^*) - = OPT'$. By applying Lemma~\ref{lemma:relaxation-ratio} - and Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most - one fractional component such that: - \begin{equation}\label{eq:e1} - L(\lambda^*) \leq 2 - F(\bar{\lambda}) - \end{equation} +To conclude the proof of Lemma~\ref{lemma:relaxation}, let us consider +a feasible point $\lambda^*\in[0,1]^{n}$ such that $L(\lambda^*) = OPT'$. By +applying Lemma~\ref{lemma:relaxation-ratio} and Lemma~\ref{lemma:rounding} we +get a feasible point $\bar{\lambda}$ with at most one fractional component such +that +\begin{equation}\label{eq:e1} + L(\lambda^*) \leq 2 F(\bar{\lambda}). +\end{equation} Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$ denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$. By definition of the multi-linear extension $F$: \begin{displaymath} - F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\}) + F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\}). \end{displaymath} - By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$, hence: + By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$. Hence, \begin{displaymath} - F(\bar{\lambda}) \leq V(S) + V(i) + F(\bar{\lambda}) \leq V(S) + V(i). \end{displaymath} Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and - $V(S)\leq OPT$. Hence: + $V(S)\leq OPT$. Hence, \begin{equation}\label{eq:e2} - F(\bar{\lambda}) \leq OPT - + \max_{i\in\mathcal{N}} V(i) + F(\bar{\lambda}) \leq OPT + \max_{i\in\mathcal{N}} V(i). \end{equation} Together, \eqref{eq:e1} and \eqref{eq:e2} imply the lemma. \hspace*{\stretch{1}}\qed -\end{proof} \subsection{Proof of Theorem \ref{thm:lowerbound}} -\begin{proof} Suppose, for contradiction, that such a mechanism exists. Consider two experiments with dimension $d=2$, such that $x_1 = e_1=[1 ,0]$, $x_2=e_2=[0,1]$ and $c_1=c_2=B/2+\epsilon$. Then, one of the two experiments, say, $x_1$, must @@ -430,6 +428,4 @@ a contradiction. If $x_1$ lowers its value to $B/2-\epsilon$, by monotonicity it remains in the solution; by threshold payment, it is paid at least $B/2+\epsilon$. So $x_2$ is not included in the solution by budget feasibility and individual rationality: hence, the selected set attains a value $\log2$, -while the optimal value is $2\log 2$. -\end{proof} - +while the optimal value is $2\log 2$.\hspace*{\stretch{1}}\qed |
