summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2013-02-11 13:09:04 -0800
committerThibaut Horel <thibaut.horel@gmail.com>2013-02-11 13:09:04 -0800
commitd9f0b6047520911d5d853565e0588eb5bd463ae0 (patch)
tree9e8828c5f58a6bebd3490622fd6efaee439999ec
parentf884186cb1e840c7b6abd343978b62cbac206cd8 (diff)
downloadrecommendation-d9f0b6047520911d5d853565e0588eb5bd463ae0.tar.gz
Small fixes to sections 4 and 5
-rw-r--r--main.tex4
-rw-r--r--notes.bib24
-rw-r--r--proofs.tex126
3 files changed, 87 insertions, 67 deletions
diff --git a/main.tex b/main.tex
index 7e9fe02..9891fb3 100644
--- a/main.tex
+++ b/main.tex
@@ -151,9 +151,9 @@ We can now state our main result:
\varepsilon\\
& \simeq 12.98V(S^*) + \varepsilon
\end{align*}
- The value of the constant $C$ is given by \eqref{eq:constant} in
- Section~\ref{sec:proofofmainthm}.
\end{theorem}
+The value of the constant $C$ is given by \eqref{eq:constant} in
+Section~\ref{sec:proofofmainthm}.
\fussy
In addition, we prove the following simple lower bound.
diff --git a/notes.bib b/notes.bib
index ef54082..5225644 100644
--- a/notes.bib
+++ b/notes.bib
@@ -619,3 +619,27 @@ year = "2011"
bibsource = {DBLP, http://dblp.uni-trier.de}
}
+@article{sylvester,
+title = "Various proofs of Sylvester's (determinant) identity",
+journal = "Mathematics and Computers in Simulation",
+volume = "42",
+number = "4–6",
+pages = "585 - 593",
+year = "1996",
+note = "<ce:title>Sybolic Computation, New Trends and Developments</ce:title>",
+issn = "0378-4754",
+doi = "10.1016/S0378-4754(96)00035-3",
+url = "http://www.sciencedirect.com/science/article/pii/S0378475496000353",
+author = "Alkiviadis G. Akritas and Evgenia K. Akritas and Genadii I. Malaschonok",
+keywords = "Sylvester's identity",
+keywords = "Polynomial remainder sequence (prs)",
+keywords = "Matrix-triangularization subresultant prs"
+}
+
+@techreport{convexmatrix,
+ title={Matrix convex functions with applications to weighted centers for semidefinite programming},
+ author={Brinkhuis, J. and Luo, Z.Q. and Zhang, S.},
+ year={2005},
+ institution={Erasmus School of Economics (ESE)}
+}
+
diff --git a/proofs.tex b/proofs.tex
index eb1226c..2cff729 100644
--- a/proofs.tex
+++ b/proofs.tex
@@ -36,7 +36,7 @@ following lemma which establishes that $OPT'$, the optimal value \eqref{relax}
is not too far from $OPT$.
\begin{lemma}[Approximation]\label{lemma:relaxation}
$ OPT' \leq 2 OPT
- + 2\max_{i\in\mathcal{N}}V(i)$
+ + 2\max_{i\in\mathcal{N}}V(i)$.
\end{lemma}
The proof of Lemma~\ref{lemma:relaxation} is our main technical contribution, and can be found in Section \ref{sec:relaxation}.
@@ -48,7 +48,7 @@ $S^*$ allocated by the mechanism is such that:
\begin{equation} \label{approxbound}
OPT
\leq \frac{10e\!-\!3 + \sqrt{64e^2\!-\!24e\!+\!9}}{2(e\!-\!1)} V(S^*)\!
-+ \! \varepsilon
++ \! \varepsilon .
\end{equation}
To see this, let $OPT_{-i^*}'$ be the true maximum value of $L$ subject to
$\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. Assume
@@ -57,53 +57,52 @@ $\tilde{L}-\varepsilon\leq OPT_{-i^*}' \leq \tilde{L}+\varepsilon$ has been
computed (Lemma~\ref{lemma:complexity} states that this is computed in time
within our complexity guarantee).
-If the condition on line 3 of the algorithm holds, then:
+If the condition on line 3 of the algorithm holds, then
\begin{displaymath}
V(i^*) \geq \frac{1}{C}OPT_{-i^*}'-\frac{\varepsilon}{C} \geq
- \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C}
+ \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C}
\end{displaymath}
as $L$ is a fractional relaxation of $V$. Also, $OPT \leq OPT_{-i^*} + V(i^*)$,
-hence:
+hence,
\begin{equation}\label{eq:bound1}
- OPT\leq (1+C)V(i^*) + \varepsilon
+ OPT\leq (1+C)V(i^*) + \varepsilon.
\end{equation}
If the condition does not hold, by observing that $OPT'_{-i^*}\leq OPT'$ and
-applying Lemma~\ref{lemma:relaxation}, we get:
+applying Lemma~\ref{lemma:relaxation}, we get
\begin{displaymath}
V(i^*) \stackrel{}\leq \frac{1}{C}OPT_{-i^*}' + \frac{\varepsilon}{C}
- \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}
+ \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}.
\end{displaymath}
-Applying Lemma~\ref{lemma:greedy-bound}:
+Applying Lemma~\ref{lemma:greedy-bound},
\begin{displaymath}
V(i^*) \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G)
- + 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C}
+ + 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C}.
\end{displaymath}
Thus, if $C$ is such that $C(e-1) -6e +2 > 0$,
\begin{align*}
V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G)
- + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}
+ + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}.
\end{align*}
-Finally, using Lemma~\ref{lemma:greedy-bound} again, we get:
+Finally, using Lemma~\ref{lemma:greedy-bound} again, we get
\begin{equation}\label{eq:bound2}
OPT(V, \mathcal{N}, B) \leq
\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}\right) V(S_G)
- + \frac{2e\varepsilon}{C(e-1)- 6e + 2}
+ + \frac{2e\varepsilon}{C(e-1)- 6e + 2}.
\end{equation}
To minimize the coefficients of $V_{i^*}$ and $V(S_G)$ in \eqref{eq:bound1}
-and \eqref{eq:bound2} respectively, we wish to chose for $C=C^*$ such that:
+and \eqref{eq:bound2} respectively, we wish to chose $C$ that minimizes
\begin{displaymath}
- C^* = \argmin_C
\max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}
- \right)\right)
+ \right)\right).
\end{displaymath}
-This equation has two solutions. Only one of those is such that $C(e-1) -6e
-+2 \geq 0$. This solution is:
+This function has two minima, only one of those is such that $C(e-1) -6e
++2 \geq 0$. This minimum is
\begin{equation}\label{eq:constant}
- C^* = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}
+ C = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}.
\end{equation}
-For this solution, $\frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon.$
-Placing the expression of $C^*$ in \eqref{eq:bound1} and \eqref{eq:bound2}
+For this minimum, $\frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon.$
+Placing the expression of $C$ in \eqref{eq:bound1} and \eqref{eq:bound2}
gives the approximation ratio in \eqref{approxbound}, and concludes the proof
of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed
@@ -241,22 +240,23 @@ For all $\lambda\in[0,1]^{n},$
Let us start by computing the derivatives of $F$ and
$L$ with respect to the $i$-th component.
- Observe that:
+ Observe that
\begin{displaymath}
\partial_i P_\mathcal{N}^\lambda(S) = \left\{
\begin{aligned}
- & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\; i\in S \\
+ & P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})\;\textrm{if}\;
+ i\in S, \\
& - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\;\textrm{if}\;
- i\in \mathcal{N}\setminus S \\
+ i\in \mathcal{N}\setminus S. \\
\end{aligned}\right.
\end{displaymath}
- Hence:
+ Hence,
\begin{displaymath}
\partial_i F(\lambda) =
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S).
\end{displaymath}
Now, using that every $S$ such that $i\in S$ can be uniquely written as
$S'\cup\{i\}$, we can write:
@@ -264,7 +264,7 @@ For all $\lambda\in[0,1]^{n},$
\partial_i F(\lambda) =
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\big(V(S\cup\{i\})
- - V(S)\big)
+ - V(S)\big).
\end{displaymath}
The marginal contribution of $i$ to
$S$ can be written as
@@ -276,7 +276,8 @@ V(S\cup \{i\}) - V(S)& = \frac{1}{2}\log\det(I_d
\T{X_S}X_S)^{-1})
= \frac{1}{2}\log(1 + \T{x_i}A(S)^{-1}x_i)
\end{align*}
-where $A(S) =I_d+ \T{X_S}X_S$.
+where $A(S) \defeq I_d+ \T{X_S}X_S$, and the last equality follows from the
+Sylvester's determinant identity~\cite{sylvester}.
% $ V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \T{x_i} A(S)^{-1}x_i\right)$.
Using this,
\begin{displaymath}
@@ -286,43 +287,44 @@ Using this,
\log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
\end{displaymath}
The computation of the derivative of $L$ uses standard matrix
- calculus. Writing $\tilde{A}(\lambda) = I_d+\sum_{i\in
- \mathcal{N}}\lambda_ix_i\T{x_i}$:
+ calculus: writing $\tilde{A}(\lambda) = I_d+\sum_{i\in
+ \mathcal{N}}\lambda_ix_i\T{x_i}$,
\begin{displaymath}
\det \tilde{A}(\lambda + h\cdot e_i) = \det\big(\tilde{A}(\lambda)
+ hx_i\T{x_i}\big)
=\det \tilde{A}(\lambda)\big(1+
- h\T{x_i}\tilde{A}(\lambda)^{-1}x_i\big)
+ h\T{x_i}\tilde{A}(\lambda)^{-1}x_i\big).
\end{displaymath}
- Hence:
+ Hence,
\begin{displaymath}
\log\det\tilde{A}(\lambda + h\cdot e_i)= \log\det\tilde{A}(\lambda)
- + h\T{x_i}\tilde{A}(\lambda)^{-1}x_i + o(h)
+ + h\T{x_i}\tilde{A}(\lambda)^{-1}x_i + o(h),
\end{displaymath}
- Finally:
+ which implies
\begin{displaymath}
\partial_i L(\lambda)
- =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i
+ =\frac{1}{2} \T{x_i}\tilde{A}(\lambda)^{-1}x_i.
\end{displaymath}
For two symmetric matrices $A$ and $B$, we write $A\succ B$ ($A\succeq B$) if
$A-B$ is positive definite (positive semi-definite). This order allows us to
define the notion of a \emph{decreasing} as well as \emph{convex} matrix
function, similarly to their real counterparts. With this definition, matrix
-inversion is decreasing and convex over symmetric positive definite matrices.
+inversion is decreasing and convex over symmetric positive definite
+matrices~\cite{convexmatrix}.
In particular,
\begin{gather*}
\forall S\subseteq\mathcal{N},\quad A(S)^{-1} \succeq A(S\cup\{i\})^{-1}
\end{gather*}
- Observe that:
+as $A(S)\leq A(S\cup\{i\})$. Observe that
\begin{gather*}
\forall S\subseteq\mathcal{N}\setminus\{i\},\quad
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})\\
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\}),\\
\forall S\subseteq\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
- \geq P_\mathcal{N}^\lambda(S)
+ \geq P_\mathcal{N}^\lambda(S).
\end{gather*}
- Hence:
+ Hence,
\begin{align*}
\partial_i F(\lambda)
% & = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
@@ -337,15 +339,15 @@ In particular,
&\geq \frac{1}{4}
\sum_{S\subseteq\mathcal{N}}
P_\mathcal{N}^\lambda(S)
- \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
+ \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big).
\end{align*}
Using that $A(S)\succeq I_d$ we get that $\T{x_i}A(S)^{-1}x_i \leq
\norm{x_i}_2^2 \leq 1$. Moreover, $\log(1+x)\geq x$ for all $x\leq 1$.
- Hence:
+ Hence,
\begin{displaymath}
\partial_i F(\lambda) \geq
\frac{1}{4}
- \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i
+ \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i.
\end{displaymath}
Finally, using that the inverse is a matrix convex function over symmetric
positive definite matrices:
@@ -355,7 +357,7 @@ In particular,
\T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i
= \frac{1}{4}\T{x_i}\tilde{A}(\lambda)^{-1}x_i
= \frac{1}{2}
- \partial_i L(\lambda)
+ \partial_i L(\lambda).
\end{displaymath}
Having bound the ratio between the partial derivatives, we now bound the ratio $F(\lambda)/L(\lambda)$ from below. Consider the following cases.
@@ -365,7 +367,7 @@ Having bound the ratio between the partial derivatives, we now bound the ratio $
\begin{equation}\label{eq:lhopital}
\frac{F(\lambda)}{L(\lambda)}
= \frac{\partial_i F(\lambda)}{\partial_i
- L(\lambda)} \geq \frac{1}{2}
+ L(\lambda)} \geq \frac{1}{2}.
\end{equation}
Second, if the minimum is attained as
$\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write:
@@ -391,37 +393,33 @@ Having bound the ratio between the partial derivatives, we now bound the ratio $
function $V$. Hence, the ratio is equal to 1 on the vertices.
\end{proof}
-\begin{proof}[of Lemma~\ref{lemma:relaxation}]
-Let us consider a feasible point $\lambda^*\in[0,1]^{n}$ such that $L(\lambda^*)
- = OPT'$. By applying Lemma~\ref{lemma:relaxation-ratio}
- and Lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
- one fractional component such that:
- \begin{equation}\label{eq:e1}
- L(\lambda^*) \leq 2
- F(\bar{\lambda})
- \end{equation}
+To conclude the proof of Lemma~\ref{lemma:relaxation}, let us consider
+a feasible point $\lambda^*\in[0,1]^{n}$ such that $L(\lambda^*) = OPT'$. By
+applying Lemma~\ref{lemma:relaxation-ratio} and Lemma~\ref{lemma:rounding} we
+get a feasible point $\bar{\lambda}$ with at most one fractional component such
+that
+\begin{equation}\label{eq:e1}
+ L(\lambda^*) \leq 2 F(\bar{\lambda}).
+\end{equation}
Let $\lambda_i$ denote the fractional component of $\bar{\lambda}$ and $S$
denote the set whose indicator vector is $\bar{\lambda} - \lambda_i e_i$.
By definition of the multi-linear extension $F$:
\begin{displaymath}
- F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\})
+ F(\bar{\lambda}) = (1-\lambda_i)V(S) +\lambda_i V(S\cup\{i\}).
\end{displaymath}
- By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$, hence:
+ By submodularity of $V$, $V(S\cup\{i\})\leq V(S) + V(\{i\})$. Hence,
\begin{displaymath}
- F(\bar{\lambda}) \leq V(S) + V(i)
+ F(\bar{\lambda}) \leq V(S) + V(i).
\end{displaymath}
Note that since $\bar{\lambda}$ is feasible, $S$ is also feasible and
- $V(S)\leq OPT$. Hence:
+ $V(S)\leq OPT$. Hence,
\begin{equation}\label{eq:e2}
- F(\bar{\lambda}) \leq OPT
- + \max_{i\in\mathcal{N}} V(i)
+ F(\bar{\lambda}) \leq OPT + \max_{i\in\mathcal{N}} V(i).
\end{equation}
Together, \eqref{eq:e1} and \eqref{eq:e2} imply the lemma. \hspace*{\stretch{1}}\qed
-\end{proof}
\subsection{Proof of Theorem \ref{thm:lowerbound}}
-\begin{proof}
Suppose, for contradiction, that such a mechanism exists. Consider two
experiments with dimension $d=2$, such that $x_1 = e_1=[1 ,0]$, $x_2=e_2=[0,1]$
and $c_1=c_2=B/2+\epsilon$. Then, one of the two experiments, say, $x_1$, must
@@ -430,6 +428,4 @@ a contradiction. If $x_1$ lowers its value to $B/2-\epsilon$, by monotonicity
it remains in the solution; by threshold payment, it is paid at least
$B/2+\epsilon$. So $x_2$ is not included in the solution by budget feasibility
and individual rationality: hence, the selected set attains a value $\log2$,
-while the optimal value is $2\log 2$.
-\end{proof}
-
+while the optimal value is $2\log 2$.\hspace*{\stretch{1}}\qed