diff options
| author | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-07-08 14:02:27 -0700 |
|---|---|---|
| committer | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-07-08 14:02:27 -0700 |
| commit | c60b7918b8a69ea362da3a58e239ef089e7e358a (patch) | |
| tree | c4c290dacc00a9a759e92e9a35c297649f22b64c /abstract.tex | |
| parent | 825d56f2f4e53eb162270fe4b3fa002f8b87a9fc (diff) | |
| download | recommendation-SODA.tar.gz | |
epsSODA
Diffstat (limited to 'abstract.tex')
| -rw-r--r-- | abstract.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/abstract.tex b/abstract.tex index 614a36b..dc663d8 100644 --- a/abstract.tex +++ b/abstract.tex @@ -18,7 +18,7 @@ We initiate the study of budgeted mechanisms for experimental design. In this se Each subject $i$ declares an associated cost $c_i >0$ to be part of the experiment, and must be paid at least her cost. In particular, the {\em Experimental Design Problem} (\SEDP) is to find a set $S$ of subjects for the experiment that maximizes $V(S) = \log\det(I_d+\sum_{i\in S}x_i\T{x_i})$ under the constraint $\sum_{i\in S}c_i\leq B$; our objective function corresponds to the information gain in parameter $\beta$ that is learned through linear regression methods, and is related to the so-called $D$-optimality criterion. Further, the subjects are \emph{strategic} and may lie about their costs. Thus, we need to design a mechanism for \SEDP{} with suitable properties. -We present a deterministic, polynomial time, budget feasible mechanism scheme, that is approximately truthful and yields a constant factor approximation to \EDP. In particular, for any small $\delta>0$ and $\varepsilon>0$, we can construct a $(12.98\,,\varepsilon)$-approximate mechanism that is $\delta$-truthful and runs in polynomial time in both $n$ and $\log\log\frac{B}{\epsilon\delta}$. +We present a deterministic, polynomial time, budget feasible mechanism scheme, that is approximately truthful and yields a 12.98 factor approximation to \EDP. %In particular, for any small $\delta>0$ and $\varepsilon>0$, we can construct a $(12.98\,,\varepsilon)$-approximate mechanism that is $\delta$-truthful and runs in polynomial time in both $n$ and $\log\log\frac{B}{\epsilon\delta}$. By applying previous work on budget feasible mechanisms with a submodular objective, one could {\em only} have derived either an exponential time deterministic mechanism or a randomized polynomial time mechanism. We also establish that no truthful, budget-feasible mechanism is possible within a factor $2$ approximation, and show how to generalize our approach to a wide class of learning problems, beyond linear regression. |
