summaryrefslogtreecommitdiffstats
path: root/abstract.tex
diff options
context:
space:
mode:
authorStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2012-11-05 12:32:11 -0800
committerStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2012-11-05 12:32:11 -0800
commitea386112229740787e940788c4f821c779732920 (patch)
treeb5d29f1ed433d101a1cb822fbadd967bb3d48b23 /abstract.tex
parent8078a282360b24fe16c75b950438c9f17ed2cde2 (diff)
downloadrecommendation-ea386112229740787e940788c4f821c779732920.tar.gz
intro abstract
Diffstat (limited to 'abstract.tex')
-rw-r--r--abstract.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/abstract.tex b/abstract.tex
index d79f6d6..2da5561 100644
--- a/abstract.tex
+++ b/abstract.tex
@@ -2,7 +2,7 @@ We initiate the study of mechanisms for \emph{experimental design}. In this sett
an experimenter with a budget $B$ has access to a population of $n$ potential experiment subjects $i\in 1,\ldots,n$, each associated with a vector of features $x_i\in\reals^d$ as well as a cost $c_i>0$.
Conducting an experiment with subject $i$ reveals an unknown value $y_i\in \reals$ to the experimenter. Assuming a linear relationship between $x_i$'s and $y_i$'s, \emph{i.e.}, $y_i \approx \T{\beta} x_i$, conducting the experiments and obtaining the measurements $y_i$ allows the experimenter to estimate $\beta$. The experimenter's goal is to select which experiments to conduct, subject to her budget constraint, to obtain the best estimate possible.
-We study this problem when subjects are \emph{strategic} and may lie about their costs. In particular, we formulate the {\em Experimental Design Problem} (\EDP) as finding a set $S$ of subjects that maximize $V(S) = \log\det(I_d+\sum_{i\in S}x_i\T{x_i})$ under the constraint $\sum_{i\in S}c_i\leq B$; our objective function corresponds to the information gain in $\beta$ when it is learned through linear regression methods, and is related to the so-called $D$-optimality criterion. We present the first known, polynomial time truthful mechanism for \EDP{}, yielding a constant factor ($\approx 19.68$) approximation, and show that no truthful algorithms are possible within a factor 2 approximation. Moreover, we show that a wider class of learning problems admits a polynomial time universally truthful (\emph{i.e.}, randomized) mechanism, also within a constant factor approximation.
+We study this problem when subjects are \emph{strategic} and may lie about their costs. In particular, we formulate the {\em Experimental Design Problem} (\EDP) as finding a set $S$ of subjects that maximize $V(S) = \log\det(I_d+\sum_{i\in S}x_i\T{x_i})$ under the constraint $\sum_{i\in S}c_i\leq B$; our objective function corresponds to the information gain in $\beta$ when it is learned through linear regression methods, and is related to the so-called $D$-optimality criterion. We present the first known deterministic, polynomial time truthful mechanism for \EDP{}, yielding a constant factor ($\approx 19.68$) approximation, and show that no truthful algorithms are possible within a factor 2 approximation. Moreover, we show that a wider class of learning problems admits a polynomial time universally truthful (\emph{i.e.}, randomized) mechanism, also within a constant factor approximation.