summaryrefslogtreecommitdiffstats
path: root/appendix.tex
diff options
context:
space:
mode:
authorStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2013-07-06 20:32:20 -0700
committerStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2013-07-06 20:32:20 -0700
commit6f255bcbe303748bfface378be199cb9d9b5012f (patch)
tree8e72cad4a3c6922305a025644326d7b4c7a2078b /appendix.tex
parent081cddcb61cc25216994c6328aa2d9cebfcc33cd (diff)
downloadrecommendation-6f255bcbe303748bfface378be199cb9d9b5012f.tar.gz
sherman morisson
Diffstat (limited to 'appendix.tex')
-rw-r--r--appendix.tex10
1 files changed, 5 insertions, 5 deletions
diff --git a/appendix.tex b/appendix.tex
index 3c2fed8..5dce278 100644
--- a/appendix.tex
+++ b/appendix.tex
@@ -178,7 +178,7 @@ the proof of the lemma. \qed
\subsection{Proof of Lemma~\ref{lemma:rounding}}\label{proofoflemmarounding}
%\begin{proof}
We give a rounding procedure which, given a feasible $\lambda$ with at least
- two fractional components, returns some feasible $\lambda'$ with one less fractional
+ two fractional components, returns some feasible $\lambda'$ with one fewer fractional
component such that $F(\lambda) \leq F(\lambda')$.
Applying this procedure recursively yields the lemma's result.
@@ -284,7 +284,7 @@ contains the strictly feasible point $\lambda=(\frac{1}{n},\ldots,\frac{1}{n})$.
is the right-hand side of the lemma.
For the left-hand side, note that $\tilde{A}(\lambda) \preceq A_n$. Hence
$\partial_iL(\lambda)\geq \T{x_i}A_n^{-1}x_i$.
- Using the Sherman-Morrison formula, for all $k\geq 1$:
+ Using the Sherman-Morrison formula \cite{sm}, for all $k\geq 1$:
\begin{displaymath}
\T{x_i}A_k^{-1} x_i = \T{x_i}A_{k-1}^{-1}x_i
- \frac{(\T{x_i}A_{k-1}^{-1}x_k)^2}{1+\T{x_k}A_{k-1}^{-1}x_k}
@@ -325,7 +325,7 @@ Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of
Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*,
\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and
-dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$:
+dual feasibility, the Karush-Kuhn-Tucker (KKT) conditions \cite{boyd2004convex} give $\forall i\in\{1, \ldots, n\}$:
\begin{gather*}
\partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\
\mu_i^*(\lambda_i^* - \alpha) = 0\\
@@ -616,7 +616,7 @@ OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big).
\end{displaymath}
\end{lemma}
-Using Proposition~\ref{prop:relaxation} and~\ref{lemma:greedy-bound} we can complete the proof of
+Using Proposition~\ref{prop:relaxation} and Lemma~\ref{lemma:greedy-bound} we can complete the proof of
Theorem~\ref{thm:main} by showing that, for any $\varepsilon > 0$, if
$OPT_{-i}'$, the optimal value of $L$ when $i^*$ is excluded from
$\mathcal{N}$, has been computed to a precision $\varepsilon$, then the set
@@ -660,7 +660,7 @@ Thus, if $C$ is such that $C(e-1) -6e +2 > 0$,
\end{align*}
Finally, using Lemma~\ref{lemma:greedy-bound} again, we get
\begin{equation}\label{eq:bound2}
- OPT(V, \mathcal{N}, B) \leq
+ OPT \leq
\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}\right) V(S_G)
+ \frac{2e\varepsilon}{C(e-1)- 6e + 2}.
\end{equation}