summaryrefslogtreecommitdiffstats
path: root/dual.tex
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2013-06-10 19:09:15 +0200
committerThibaut Horel <thibaut.horel@gmail.com>2013-06-10 19:09:15 +0200
commit7ff4a4d46dbd64cd8bc7c07d0c7f11f13779443c (patch)
tree185567c1d8dbbe22ca7c7696887a4931c46e7818 /dual.tex
parent6a7822112496198f118bdcedc2600f6b6770dd39 (diff)
downloadrecommendation-7ff4a4d46dbd64cd8bc7c07d0c7f11f13779443c.tar.gz
Moving our two main results to a section preceding the introduction of our mechanism
Diffstat (limited to 'dual.tex')
-rw-r--r--dual.tex263
1 files changed, 0 insertions, 263 deletions
diff --git a/dual.tex b/dual.tex
deleted file mode 100644
index a2d28c6..0000000
--- a/dual.tex
+++ /dev/null
@@ -1,263 +0,0 @@
-\documentclass{article}
-\usepackage[T1]{fontenc}
-\usepackage[utf8]{inputenc}
-\usepackage{amsmath, amsfonts, amsthm}
-\newtheorem{proposition}{Proposition}
-\input{definitions}
-
-\begin{document}
-Let $c$ be a cost vector in $[0,1]^n$, and $x_1,\ldots,x_n$, $n$ vectors in
-$\mathbf{R}^d$ such that for all $i\in\{1,\ldots,n\}$, $b\leq \T{x_i}{x_i}\leq
-1$ for some $b\in(0,1]$. Let us consider the following convex optimization
-problem:
-\begin{equation}\tag{$P_c$}\label{eq:primal}
- \begin{split}
- \mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n
- \lambda_i x_i x_i^T\right)\\
- \textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; 0\leq\lambda\leq \mathbf{1}
-\end{split}
-\end{equation}
-We denote by $L^*_c$ its optimal value.
-
-Let $\alpha\in\mathbf{R}^+$, consider the perturbed optimization problem:
-\begin{equation}\tag{$P_{c, \alpha}$}\label{eq:perturbed-primal}
- \begin{split}
- \mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n
- \lambda_i x_i x_i^T\right)\\
- \textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; \alpha\leq\lambda\leq \mathbf{1}
-\end{split}
-\end{equation}
-and denote by $L^*_c(\alpha)$ its optimal value. Note that we have $L^*_c = L^*_c(0)$.
-
-We will assume that $\alpha<\frac{1}{n}$ so that \eqref{eq:perturbed-primal} has at
-least one feasible point: $(\frac{1}{n},\ldots,\frac{1}{n})$.
-
-Let us introduce the lagrangian of problem, \eqref{eq:perturbed-primal}:
-\begin{displaymath}
- \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda)
- + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda)
-\end{displaymath}
-so that:
-\begin{displaymath}
- L^*_c(\alpha) = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi)
-\end{displaymath}
-Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}.
-
-Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*,
-\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and
-dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$:
-\begin{gather*}
- \partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\
- \mu_i^*(\lambda_i^* - \alpha) = 0\\
- \nu_i^*(1 - \lambda_i^*) = 0
-\end{gather*}
-
-\begin{lemma}\label{lemma:derivative-bounds}
- Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then:
- \begin{displaymath}
- \forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1
- \end{displaymath}
-\end{lemma}
-
-\begin{proof}
- Let us define:
- \begin{displaymath}
- S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i}
- \quad\mathrm{and}\quad
- S_k \defeq I_d + \sum_{i=1}^k x_i\T{x_i}
- \end{displaymath}
-
- We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since
- $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which
- is the right-hand side of the lemma.
-
- For the left-hand side, note that $S(\lambda) \leq S_n$. Hence
- $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$.
-
- Using the Sherman-Morrison formula, for all $k\geq 1$:
- \begin{displaymath}
- \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i
- - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k}
- \end{displaymath}
-
- By the Cauchy-Schwarz inequality:
- \begin{displaymath}
- (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k
- \end{displaymath}
-
- Hence:
- \begin{displaymath}
- \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k}
- \end{displaymath}
-
- But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if
- $0\leq a\leq 1$, so:
- \begin{displaymath}
- \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i
- - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2}
- \end{displaymath}
-
- By induction:
- \begin{displaymath}
- \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n}
- \end{displaymath}
-
- Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side
- of the lemma's inequality.
-\end{proof}
-
-\begin{lemma}\label{lemma:proximity}
-We have:
-\begin{displaymath}
- L^*_c - \alpha n^2\leq L^*_c(\alpha) \leq L^*_c
-\end{displaymath}
-In particular, $|L^*_c - L^*_c(\alpha)| \leq \alpha n^2$.
-\end{lemma}
-
-\begin{proof}
- $\alpha\mapsto L^*_c(\alpha)$ is a decreasing function as it is the
- maximum value of the $L$ function over a set-decreasing domain, which gives
- the rightmost inequality.
-
- Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is:
- \begin{displaymath}
- L^*_{c}(\alpha) = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
- \end{displaymath}
-
- Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*)
- = \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
- - \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for
- problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*)
- \geq L(\lambda)$. Hence,
- \begin{displaymath}
- L^*_{c}(\alpha) \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^*
- \end{displaymath}
- for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda$ primal optimal for $\eqref{eq:primal}$:
- \begin{equation}\label{eq:local-1}
- L^*_{c}(\alpha) \geq L^*_c - \alpha\T{\mathbf{1}}\mu^*
- \end{equation}
-
- Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq
- \{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for
- $\eqref{eq:perturbed-primal}$. From the KKT conditions we see that:
- \begin{displaymath}
- M \subseteq \{i|\lambda_i^* = \alpha\}
- \end{displaymath}
-
-
- Let us first assume that $|M| = 0$, then $\T{\mathbf{1}}\mu^*=0$ and the lemma follows.
-
- We will now assume that $|M|\geq 1$. In this case $\T{c}\lambda^*
- = 1$, otherwise we could increase the coordinates of $\lambda^*$ in $M$,
- which would increase the value of the objective function and contradict the
- optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since
- $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < 1$, which again
- contradicts the optimality of $\lambda^*$. Let us write:
- \begin{displaymath}
- 1 = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i
- \leq \alpha |M| + (n-|M|)\max_{i\in \bar{M}} c_i
- \end{displaymath}
- That is:
- \begin{equation}\label{local-2}
- \max_{i\in\bar{M}} c_i \geq \frac{1 - |M|\alpha}{n-|M|}> \frac{1}{n}
- \end{equation}
- where the last inequality uses again that $\alpha<\frac{1}{n}$. From the
- KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and:
- \begin{equation}\label{local-3}
- \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^*
- \end{equation}
- since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$.
-
- Furthermore, using the KKT conditions again, we have that:
- \begin{equation}\label{local-4}
- \xi^* \leq \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i}
- = \frac{1}{\max_{i\in\bar{M}} c_i}
- \end{equation}
- where the last inequality uses Lemma~\ref{lemma:derivative-bounds}.
-
- Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that:
- \begin{displaymath}
- \sum_{i\in M}\mu_i^* \leq |M|\xi^* \leq n\xi^*\leq \frac{n}{\max_{i\in\bar{M}} c_i} \leq n^2
- \end{displaymath}
-
- This implies that:
- \begin{displaymath}
- \T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^*\leq n^2
- \end{displaymath}
- which in addition to \eqref{eq:local-1} proves the lemma.
-\end{proof}
-
-\begin{lemma}\label{lemma:monotonicity}
- If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have:
- \begin{displaymath}
- L^*_{c'}(\alpha) \geq L^*_c(\alpha) + \frac{\alpha\delta b}{2^n}
- \end{displaymath}
-\end{lemma}
-
-\begin{proof}
- Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that, $\mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq
- \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta$, we get similarly to Lemma~\ref{lemma:proximity}:
- \begin{displaymath}
- L^*_{c'}(\alpha) \geq L(\lambda) + \lambda_i\xi^*\delta
- \end{displaymath}
- for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}:
- \begin{displaymath}
- L^*_{c'}(\alpha) \geq L^*_{c}(\alpha) + \alpha\xi^*\delta
- \end{displaymath}
- since $\lambda_i^*\geq \alpha$.
-
- Using the KKT conditions for $(P_{c', \alpha})$, we can write:
- \begin{displaymath}
- \xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'}
- \end{displaymath}
- with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof.
-\end{proof}
-
-\begin{proposition}
- Let $\delta\in(0,1]$. For any $\varepsilon\in(0,1]$, there exists
- a routine which computes an approximate solution $\tilde{L}^*_c$ to
- \eqref{eq:primal} such that:
- \begin{enumerate}
- \item $|\tilde{L}^*_c - L^*_c| \leq \varepsilon$
- \item for all $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, $\tilde{L}^*_c \leq \tilde{L}^*_{c'}$
- \item the routine's running time is $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$
- \end{enumerate}
-\end{proposition}
-
-\begin{proof}
-Let $\varepsilon$ in $(0, 1]$. The routine works as follows: set $\alpha\defeq
-\varepsilon(\delta + n^2)^{-1}$ and return an approximation $\tilde{L}^*_c$ of
-$L^*_c(\alpha)$ with an accuracy $\frac{1}{2^{n+1}}\alpha\delta b$ computed by
-a standard convex optimization algorithm. Note that this choice of $\alpha$
-implies $\alpha<\frac{1}{n}$ as required.
-
-\begin{enumerate}
- \item using Lemma~\ref{lemma:proximity}:
-\begin{displaymath}
- |\tilde{L}^*_c - L^*_c| \leq |\tilde{L}^*_c - L^*_c(\alpha)| + |L^*_c(\alpha) - L^*_c|
- \leq \alpha\delta + \alpha n^2 = \varepsilon
-\end{displaymath}
-
-\item let $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, then:
-\begin{displaymath}
- \tilde{L}^*_{c'} \geq L^*_{c'} - \frac{\alpha\delta b}{2^{n+1}}
- \geq L^*_c + \frac{\alpha\delta b}{2^{n+1}}
- \geq \tilde{L}^*_c
-\end{displaymath}
-where the first and inequality come from the accuracy of the approximation, and
-the inner inequality follows from Lemma~\ref{lemma:monotonicity}.
-
-\item the accuracy of the approximation $\tilde{L}^*_c$ is:
-\begin{displaymath}
- A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2)}
-\end{displaymath}
-\sloppy
-hence, the standard convex optimization algorithm runs in time $O(poly(n, d,\log\log A^{-1}))$. Note that:
-\begin{displaymath}
- \log\log A^{-1} = O\bigg(\log\log\frac{1}{\varepsilon\delta b} + \log n\bigg)
-\end{displaymath}
-which yields the wanted running time for the routine.\qedhere
-\end{enumerate}
-\end{proof}
-\end{document}