diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2013-06-10 19:09:15 +0200 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2013-06-10 19:09:15 +0200 |
| commit | 7ff4a4d46dbd64cd8bc7c07d0c7f11f13779443c (patch) | |
| tree | 185567c1d8dbbe22ca7c7696887a4931c46e7818 /dual.tex | |
| parent | 6a7822112496198f118bdcedc2600f6b6770dd39 (diff) | |
| download | recommendation-7ff4a4d46dbd64cd8bc7c07d0c7f11f13779443c.tar.gz | |
Moving our two main results to a section preceding the introduction of our mechanism
Diffstat (limited to 'dual.tex')
| -rw-r--r-- | dual.tex | 263 |
1 files changed, 0 insertions, 263 deletions
diff --git a/dual.tex b/dual.tex deleted file mode 100644 index a2d28c6..0000000 --- a/dual.tex +++ /dev/null @@ -1,263 +0,0 @@ -\documentclass{article} -\usepackage[T1]{fontenc} -\usepackage[utf8]{inputenc} -\usepackage{amsmath, amsfonts, amsthm} -\newtheorem{proposition}{Proposition} -\input{definitions} - -\begin{document} -Let $c$ be a cost vector in $[0,1]^n$, and $x_1,\ldots,x_n$, $n$ vectors in -$\mathbf{R}^d$ such that for all $i\in\{1,\ldots,n\}$, $b\leq \T{x_i}{x_i}\leq -1$ for some $b\in(0,1]$. Let us consider the following convex optimization -problem: -\begin{equation}\tag{$P_c$}\label{eq:primal} - \begin{split} - \mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n - \lambda_i x_i x_i^T\right)\\ - \textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; 0\leq\lambda\leq \mathbf{1} -\end{split} -\end{equation} -We denote by $L^*_c$ its optimal value. - -Let $\alpha\in\mathbf{R}^+$, consider the perturbed optimization problem: -\begin{equation}\tag{$P_{c, \alpha}$}\label{eq:perturbed-primal} - \begin{split} - \mathrm{maximize}\quad & L(\lambda) \defeq\log\det\left(I_d + \sum_{i=1}^n - \lambda_i x_i x_i^T\right)\\ - \textrm{subject to}\quad & c^T\lambda \leq 1 \;;\; \alpha\leq\lambda\leq \mathbf{1} -\end{split} -\end{equation} -and denote by $L^*_c(\alpha)$ its optimal value. Note that we have $L^*_c = L^*_c(0)$. - -We will assume that $\alpha<\frac{1}{n}$ so that \eqref{eq:perturbed-primal} has at -least one feasible point: $(\frac{1}{n},\ldots,\frac{1}{n})$. - -Let us introduce the lagrangian of problem, \eqref{eq:perturbed-primal}: -\begin{displaymath} - \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) \defeq L(\lambda) - + \T{\mu}(\lambda-\alpha\mathbf{1}) + \T{\nu}(\mathbf{1}-\lambda) + \xi(1-\T{c}\lambda) -\end{displaymath} -so that: -\begin{displaymath} - L^*_c(\alpha) = \min_{\mu, \nu, \xi\geq 0}\max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu, \nu, \xi) -\end{displaymath} -Similarly, we define $\mathcal{L}_{c}\defeq\mathcal{L}_{c, 0}$ the lagrangian of \eqref{eq:primal}. - -Let $\lambda^*$ be primal optimal for \eqref{eq:perturbed-primal}, and $(\mu^*, -\nu^*, \xi^*)$ be dual optimal for the same problem. In addition to primal and -dual feasibility, the KKT conditions give $\forall i\in\{1, \ldots, n\}$: -\begin{gather*} - \partial_i L(\lambda^*) + \mu_i^* - \nu_i^* - \xi^* c_i = 0\\ - \mu_i^*(\lambda_i^* - \alpha) = 0\\ - \nu_i^*(1 - \lambda_i^*) = 0 -\end{gather*} - -\begin{lemma}\label{lemma:derivative-bounds} - Let $\partial_i L(\lambda)$ denote the $i$-th derivative of $L$, for $i\in\{1,\ldots, n\}$, then: - \begin{displaymath} - \forall\lambda\in[0, 1]^n,\;\frac{b}{2^n} \leq \partial_i L(\lambda) \leq 1 - \end{displaymath} -\end{lemma} - -\begin{proof} - Let us define: - \begin{displaymath} - S(\lambda)\defeq I_d + \sum_{i=1}^n \lambda_i x_i\T{x_i} - \quad\mathrm{and}\quad - S_k \defeq I_d + \sum_{i=1}^k x_i\T{x_i} - \end{displaymath} - - We have $\partial_i L(\lambda) = \T{x_i}S(\lambda)^{-1}x_i$. Since - $S(\lambda)\geq I_d$, $\partial_i L(\lambda)\leq \T{x_i}x_i \leq 1$, which - is the right-hand side of the lemma. - - For the left-hand side, note that $S(\lambda) \leq S_n$. Hence - $\partial_iL(\lambda)\geq \T{x_i}S_n^{-1}x_i$. - - Using the Sherman-Morrison formula, for all $k\geq 1$: - \begin{displaymath} - \T{x_i}S_k^{-1} x_i = \T{x_i}S_{k-1}^{-1}x_i - - \frac{(\T{x_i}S_{k-1}^{-1}x_k)^2}{1+\T{x_k}S_{k-1}^{-1}x_k} - \end{displaymath} - - By the Cauchy-Schwarz inequality: - \begin{displaymath} - (\T{x_i}S_{k-1}^{-1}x_k)^2 \leq \T{x_i}S_{k-1}^{-1}x_i\;\T{x_k}S_{k-1}^{-1}x_k - \end{displaymath} - - Hence: - \begin{displaymath} - \T{x_i}S_k^{-1} x_i \geq \T{x_i}S_{k-1}^{-1}x_i - - \T{x_i}S_{k-1}^{-1}x_i\frac{\T{x_k}S_{k-1}^{-1}x_k}{1+\T{x_k}S_{k-1}^{-1}x_k} - \end{displaymath} - - But $\T{x_k}S_{k-1}^{-1}x_k\leq 1$ and $\frac{a}{1+a}\leq \frac{1}{2}$ if - $0\leq a\leq 1$, so: - \begin{displaymath} - \T{x_i}S_{k}^{-1}x_i \geq \T{x_i}S_{k-1}^{-1}x_i - - \frac{1}{2}\T{x_i}S_{k-1}^{-1}x_i\geq \frac{\T{x_i}S_{k-1}^{-1}x_i}{2} - \end{displaymath} - - By induction: - \begin{displaymath} - \T{x_i}S_n^{-1} x_i \geq \frac{\T{x_i}x_i}{2^n} - \end{displaymath} - - Using that $\T{x_i}{x_i}\geq b$ concludes the proof of the left-hand side - of the lemma's inequality. -\end{proof} - -\begin{lemma}\label{lemma:proximity} -We have: -\begin{displaymath} - L^*_c - \alpha n^2\leq L^*_c(\alpha) \leq L^*_c -\end{displaymath} -In particular, $|L^*_c - L^*_c(\alpha)| \leq \alpha n^2$. -\end{lemma} - -\begin{proof} - $\alpha\mapsto L^*_c(\alpha)$ is a decreasing function as it is the - maximum value of the $L$ function over a set-decreasing domain, which gives - the rightmost inequality. - - Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c, \alpha})$, that is: - \begin{displaymath} - L^*_{c}(\alpha) = \max_\lambda \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) - \end{displaymath} - - Note that $\mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) - = \mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) - - \alpha\T{\mathbf{1}}\mu^*$, and that for any $\lambda$ feasible for - problem \eqref{eq:primal}, $\mathcal{L}_{c}(\lambda, \mu^*, \nu^*, \xi^*) - \geq L(\lambda)$. Hence, - \begin{displaymath} - L^*_{c}(\alpha) \geq L(\lambda) - \alpha\T{\mathbf{1}}\mu^* - \end{displaymath} - for any $\lambda$ feasible for \eqref{eq:primal}. In particular, for $\lambda$ primal optimal for $\eqref{eq:primal}$: - \begin{equation}\label{eq:local-1} - L^*_{c}(\alpha) \geq L^*_c - \alpha\T{\mathbf{1}}\mu^* - \end{equation} - - Let us denote by the $M$ the support of $\mu^*$, that is $M\defeq - \{i|\mu_i^* > 0\}$, and by $\lambda^*$ a primal optimal point for - $\eqref{eq:perturbed-primal}$. From the KKT conditions we see that: - \begin{displaymath} - M \subseteq \{i|\lambda_i^* = \alpha\} - \end{displaymath} - - - Let us first assume that $|M| = 0$, then $\T{\mathbf{1}}\mu^*=0$ and the lemma follows. - - We will now assume that $|M|\geq 1$. In this case $\T{c}\lambda^* - = 1$, otherwise we could increase the coordinates of $\lambda^*$ in $M$, - which would increase the value of the objective function and contradict the - optimality of $\lambda^*$. Note also, that $|M|\leq n-1$, otherwise, since - $\alpha< \frac{1}{n}$, we would have $\T{c}\lambda^*\ < 1$, which again - contradicts the optimality of $\lambda^*$. Let us write: - \begin{displaymath} - 1 = \T{c}\lambda^* = \alpha\sum_{i\in M}c_i + \sum_{i\in \bar{M}}\lambda_i^*c_i - \leq \alpha |M| + (n-|M|)\max_{i\in \bar{M}} c_i - \end{displaymath} - That is: - \begin{equation}\label{local-2} - \max_{i\in\bar{M}} c_i \geq \frac{1 - |M|\alpha}{n-|M|}> \frac{1}{n} - \end{equation} - where the last inequality uses again that $\alpha<\frac{1}{n}$. From the - KKT conditions, we see that for $i\in M$, $\nu_i^* = 0$ and: - \begin{equation}\label{local-3} - \mu_i^* = \xi^*c_i - \partial_i L(\lambda^*)\leq \xi^*c_i\leq \xi^* - \end{equation} - since $\partial_i L(\lambda^*)\geq 0$ and $c_i\leq 1$. - - Furthermore, using the KKT conditions again, we have that: - \begin{equation}\label{local-4} - \xi^* \leq \inf_{i\in \bar{M}}\frac{\partial_i L(\lambda^*)}{c_i}\leq \inf_{i\in \bar{M}} \frac{1}{c_i} - = \frac{1}{\max_{i\in\bar{M}} c_i} - \end{equation} - where the last inequality uses Lemma~\ref{lemma:derivative-bounds}. - - Combining \eqref{local-2}, \eqref{local-3} and \eqref{local-4}, we get that: - \begin{displaymath} - \sum_{i\in M}\mu_i^* \leq |M|\xi^* \leq n\xi^*\leq \frac{n}{\max_{i\in\bar{M}} c_i} \leq n^2 - \end{displaymath} - - This implies that: - \begin{displaymath} - \T{\mathbf{1}}\mu^* = \sum_{i=1}^n \mu^*_i = \sum_{i\in M}\mu_i^*\leq n^2 - \end{displaymath} - which in addition to \eqref{eq:local-1} proves the lemma. -\end{proof} - -\begin{lemma}\label{lemma:monotonicity} - If $c'$ = $(c_i', c_{-i})$, with $c_i'\leq c_i - \delta$, we have: - \begin{displaymath} - L^*_{c'}(\alpha) \geq L^*_c(\alpha) + \frac{\alpha\delta b}{2^n} - \end{displaymath} -\end{lemma} - -\begin{proof} - Let $\mu^*, \nu^*, \xi^*$ be dual optimal for $(P_{c', \alpha})$. Noting that, $\mathcal{L}_{c', \alpha}(\lambda, \mu^*, \nu^*, \xi^*) \geq - \mathcal{L}_{c, \alpha}(\lambda, \mu^*, \nu^*, \xi^*) + \lambda_i\xi^*\delta$, we get similarly to Lemma~\ref{lemma:proximity}: - \begin{displaymath} - L^*_{c'}(\alpha) \geq L(\lambda) + \lambda_i\xi^*\delta - \end{displaymath} - for any $\lambda$ feasible for \eqref{eq:perturbed-primal}. In particular, for $\lambda^*$ primal optimal for \eqref{eq:perturbed-primal}: - \begin{displaymath} - L^*_{c'}(\alpha) \geq L^*_{c}(\alpha) + \alpha\xi^*\delta - \end{displaymath} - since $\lambda_i^*\geq \alpha$. - - Using the KKT conditions for $(P_{c', \alpha})$, we can write: - \begin{displaymath} - \xi^* = \inf_{i:\lambda^{'*}_i>\alpha} \frac{\T{x_i}S(\lambda^{'*})^{-1}x_i}{c_i'} - \end{displaymath} - with $\lambda^{'*}$ optimal for $(P_{c', \alpha})$. Since $c_i'\leq 1$, using Lemma~\ref{lemma:derivative-bounds}, we get that $\xi^*\geq \frac{b}{2^n}$, which concludes the proof. -\end{proof} - -\begin{proposition} - Let $\delta\in(0,1]$. For any $\varepsilon\in(0,1]$, there exists - a routine which computes an approximate solution $\tilde{L}^*_c$ to - \eqref{eq:primal} such that: - \begin{enumerate} - \item $|\tilde{L}^*_c - L^*_c| \leq \varepsilon$ - \item for all $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, $\tilde{L}^*_c \leq \tilde{L}^*_{c'}$ - \item the routine's running time is $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$ - \end{enumerate} -\end{proposition} - -\begin{proof} -Let $\varepsilon$ in $(0, 1]$. The routine works as follows: set $\alpha\defeq -\varepsilon(\delta + n^2)^{-1}$ and return an approximation $\tilde{L}^*_c$ of -$L^*_c(\alpha)$ with an accuracy $\frac{1}{2^{n+1}}\alpha\delta b$ computed by -a standard convex optimization algorithm. Note that this choice of $\alpha$ -implies $\alpha<\frac{1}{n}$ as required. - -\begin{enumerate} - \item using Lemma~\ref{lemma:proximity}: -\begin{displaymath} - |\tilde{L}^*_c - L^*_c| \leq |\tilde{L}^*_c - L^*_c(\alpha)| + |L^*_c(\alpha) - L^*_c| - \leq \alpha\delta + \alpha n^2 = \varepsilon -\end{displaymath} - -\item let $c' = (c_i', c_{-i})$ with $c_i'\leq c_i-\delta$, then: -\begin{displaymath} - \tilde{L}^*_{c'} \geq L^*_{c'} - \frac{\alpha\delta b}{2^{n+1}} - \geq L^*_c + \frac{\alpha\delta b}{2^{n+1}} - \geq \tilde{L}^*_c -\end{displaymath} -where the first and inequality come from the accuracy of the approximation, and -the inner inequality follows from Lemma~\ref{lemma:monotonicity}. - -\item the accuracy of the approximation $\tilde{L}^*_c$ is: -\begin{displaymath} - A\defeq\frac{\varepsilon\delta b}{2^{n+1}(\delta + n^2)} -\end{displaymath} -\sloppy -hence, the standard convex optimization algorithm runs in time $O(poly(n, d,\log\log A^{-1}))$. Note that: -\begin{displaymath} - \log\log A^{-1} = O\bigg(\log\log\frac{1}{\varepsilon\delta b} + \log n\bigg) -\end{displaymath} -which yields the wanted running time for the routine.\qedhere -\end{enumerate} -\end{proof} -\end{document} |
