diff options
| author | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-07-08 14:02:27 -0700 |
|---|---|---|
| committer | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2013-07-08 14:02:27 -0700 |
| commit | c60b7918b8a69ea362da3a58e239ef089e7e358a (patch) | |
| tree | c4c290dacc00a9a759e92e9a35c297649f22b64c /intro.tex | |
| parent | 825d56f2f4e53eb162270fe4b3fa002f8b87a9fc (diff) | |
| download | recommendation-SODA.tar.gz | |
epsSODA
Diffstat (limited to 'intro.tex')
| -rw-r--r-- | intro.tex | 3 |
1 files changed, 2 insertions, 1 deletions
@@ -38,7 +38,8 @@ subject to a budget constraint $\sum_{i\in S}c_i\leq B$, where $B$ is \E's budge \smallskip The objective function, which is the key, is formally obtained by optimizing the information gain in $\beta$ when the latter is learned through ridge regression, and is related to the so-called $D$-optimality criterion~\cite{pukelsheim2006optimal,atkinson2007optimum}. \item -We present a polynomial time mechanism scheme for \SEDP{} that is approximately truthful and yields a constant factor approximation to the optimal value of \eqref{obj}. In particular, for any small $\delta>0$ and $\varepsilon>0$, we can construct a $(12.98\,,\varepsilon)$-approximate mechanism that is $\delta$-truthful and runs in polynomial time in both $n$ and $\log\log\frac{B}{\epsilon\delta}$. In contrast to this, we show that no truthful, budget-feasible mechanisms are possible for \SEDP{} within a factor 2 approximation. +We present a polynomial time mechanism scheme for \SEDP{} that is approximately truthful and yields a constant factor ($\approx 12.98$) approximation to the optimal value of \eqref{obj}. %In particular, for any small $\delta>0$ and $\varepsilon>0$, we can construct a $(12.98\,,\varepsilon)$-approximate mechanism that is $\delta$-truthful and runs in polynomial time in both $n$ and $\log\log\frac{B}{\epsilon\delta}$. +In contrast to this, we show that no truthful, budget-feasible mechanisms are possible for \SEDP{} within a factor 2 approximation. \smallskip We note that the objective \eqref{obj} is submodular. Using this fact, applying previous results on budget feasible mechanism design under general submodular objectives~\cite{singer-mechanisms,chen} would yield either a deterministic, truthful, constant-approximation mechanism that requires exponential time, or a non-deterministic, (universally) truthful, poly-time mechanism that yields a constant approximation ratio only \emph{in expectation} (\emph{i.e.}, its approximation guarantee for a given instance may in fact be unbounded). |
