summaryrefslogtreecommitdiffstats
path: root/main.tex
diff options
context:
space:
mode:
authorStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2012-11-04 17:57:02 -0800
committerStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2012-11-04 17:57:02 -0800
commit2befde8163f17a70c698a9ab099043ef2c76d8a0 (patch)
treea021e60c1105a53b7ed8afcc3fbc6b0b810207e4 /main.tex
parent86b8f967a12fe5870fe7c8d0f765149c003832c6 (diff)
downloadrecommendation-2befde8163f17a70c698a9ab099043ef2c76d8a0.tar.gz
marginal contrib
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex57
1 files changed, 28 insertions, 29 deletions
diff --git a/main.tex b/main.tex
index 560a86a..d14e668 100644
--- a/main.tex
+++ b/main.tex
@@ -340,7 +340,7 @@ This solution is:
%\end{displaymath}
%However, for the purpose of proving theorem~\ref{thm:main}, we need to bound
%$L_\mathcal{N}$ from above (up to a multiplicative factor) by $V$.
-Toprove Lemma~\ref{lemma:relaxation}, we use the
+To prove Lemma~\ref{lemma:relaxation}, we use the
\emph{pipage rounding} method of Ageev and Sviridenko~\cite{pipage}, where
$L_\mathcal{N}$ is first bounded from above by the multi-linear relaxation $F_\mathcal{N}$, which is itself
subsequently bounded by $V$. While the latter part is general and can be applied
@@ -434,27 +434,29 @@ For all $\lambda\in[0,1]^{n},$
\end{lemma}
\begin{proof}
We will prove that $\frac{1}{2}$ is a lower bound of the ratio $\partial_i
- F_\mathcal{N}(\lambda)/\partial_i L_\mathcal{N}(\lambda)$. Where
- $\partial_i\, \cdot$ denotes the derivative of a function with respect to the
- $i$-th variable. This will be enough to conclude, by observing that at
- $\lambda = 0$, one can write:
- \begin{displaymath}
- \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
- \sim_{\lambda\rightarrow 0}
- \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F_\mathcal{N}(0)}
- {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L_\mathcal{N}(0)}
- \geq \frac{1}{2}
- \end{displaymath}
- If the minimum is attained at a point interior to the hypercube, then it is
- a critical point of the ratio
- $F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$. Such a critical point is
+ F_\mathcal{N}(\lambda)/\partial_i L_\mathcal{N}(\lambda)$, where
+ $\partial_i\, \cdot$ denotes the partial derivative of a function with respect to the
+ $i$-th variable. This will be enough to conclude, by observing the following cases.
+ First, if the minimum of the ratio
+ $F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$ is attained at a point interior to the hypercube, then it is
+ a critical point; such a critical point is
characterized by:
\begin{equation}\label{eq:lhopital}
\frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
= \frac{\partial_i F_\mathcal{N}(\lambda)}{\partial_i
L_\mathcal{N}(\lambda)} \geq \frac{1}{2}
\end{equation}
- Finally, if the minimum is attained on a face of the hypercube (a face is
+ Second, if the minimum is attained as
+ $\lambda$ converges to zero in, \emph{e.g.}, the $l_2$ norm, by the Taylor approximation, one can write:
+ \begin{displaymath}
+ \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}
+ \sim_{\lambda\rightarrow 0}
+ \frac{\sum_{i\in \mathcal{N}}\lambda_i\partial_i F_\mathcal{N}(0)}
+ {\sum_{i\in\mathcal{N}}\lambda_i\partial_i L_\mathcal{N}(0)}
+ \geq \frac{1}{2},
+ \end{displaymath}
+ \emph{i.e.}, the ratio $\frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)}$ is necessarily bounded from below by 1/2 for small enough $\lambda$.
+ Finally, if the minimum is attained on a face of the hypercube $[0,1]^n$ (a face is
defined as a subset of the hypercube where one of the variable is fixed to
0 or 1), without loss of generality, we can assume that the minimum is
attained on the face where the $n$-th variable has been fixed
@@ -469,7 +471,6 @@ For all $\lambda\in[0,1]^{n},$
Let us start by computing the derivatives of $F_\mathcal{N}$ and
$L_\mathcal{N}$ with respect to the $i$-th component.
-
For $F$, it suffices to look at the derivative of
$P_\mathcal{N}^\lambda(S)$:
\begin{displaymath}
@@ -484,44 +485,43 @@ For all $\lambda\in[0,1]^{n},$
\begin{multline*}
\partial_i F_\mathcal{N} =
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}}
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)\\
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)
\end{multline*}
-
Now, using that every $S$ such that $i\in S$ can be uniquely written as
$S'\cup\{i\}$, we can write:
\begin{multline*}
\partial_i F_\mathcal{N} =
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
- P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S\cup\{i\})\\
+ P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S\cup\{i\})
- \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)
\end{multline*}
- Finally, by using the expression for the marginal contribution of $i$ to
- $S$:
+ Finally, the marginal contribution of $i$ to
+ $S$ is
+ $ \Delta_i V(S)\defeq V(S\cup\{i\}) - V(S) = \frac{1}{2}\log\left(1 + \mu \T{x_i} A(S)^{-1}x_i\right)$.
+Using this,
\begin{displaymath}
\partial_i F_\mathcal{N}(\lambda) =
\sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
\log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
\end{displaymath}
-
- The computation of the derivative of $L_\mathcal{N}$ uses standard matrix
+ where $A(S) =I_d+ \T{X_S}X_S$. The computation of the derivative of $L_\mathcal{N}$ uses standard matrix
calculus and gives:
\begin{displaymath}
\partial_i L_\mathcal{N}(\lambda)
= \T{x_i}\tilde{A}(\lambda)^{-1}x_i
\end{displaymath}
-
- Using the following inequalities:
+ where $\tilde{A}(\lambda) = I_d+\sum_{i\in \mathcal{N}}\lambda_ix_i\T{x_i}$. Using the following inequalities (where $A\geq B$ implies $A-B$ is positive semi-definite):
\begin{gather*}
\forall S\subseteq\mathcal{N}\setminus\{i\},\quad
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq
P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})\\
\forall S\subseteq\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
\geq P_\mathcal{N}^\lambda(S)\\
- \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\
+ \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}
\end{gather*}
we get:
\begin{align*}
@@ -540,9 +540,8 @@ For all $\lambda\in[0,1]^{n},$
&\geq \frac{1}{2}
\sum_{S\subseteq\mathcal{N}}
P_\mathcal{N}^\lambda(S)
- \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)\\
+ \log\Big(1 + \T{x_i}A(S)^{-1}x_i\Big)
\end{align*}
-
Using that $A(S)\geq I_d$ we get that:
\begin{displaymath}
\T{x_i}A(S)^{-1}x_i \leq \norm{x_i}_2^2 = 1