diff options
| author | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2012-10-30 08:28:13 -0700 |
|---|---|---|
| committer | Stratis Ioannidis <stratis@stratis-Latitude-E6320.(none)> | 2012-10-30 08:28:13 -0700 |
| commit | 2d54b5d27ffd2782aec0bab8200b5b9e55585805 (patch) | |
| tree | 7921aeb0ed2a13a0e9ecb29c2ee26dbe0acaf6ae /main.tex | |
| parent | dacff6f8d498ef281066742305db90d1121d7f3b (diff) | |
| parent | fe8aa3a0134a9493a2443a0965392254a7125094 (diff) | |
| download | recommendation-2d54b5d27ffd2782aec0bab8200b5b9e55585805.tar.gz | |
conf
Diffstat (limited to 'main.tex')
| -rw-r--r-- | main.tex | 76 |
1 files changed, 38 insertions, 38 deletions
@@ -37,7 +37,7 @@ Here, we use a relaxation of the objective function which is tailored to the problem of ridge regression. We define: \begin{displaymath} \forall\lambda\in[0,1]^{|\mathcal{N}|}\,\quad L_{\mathcal{N}}(\lambda) \defeq - \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}} \lambda_i x_i x_i^*\right) + \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}} \lambda_i x_i \T{x_i}\right) \end{displaymath} We can now present the mechanism we use, which has a same flavor to Chen's and @@ -47,7 +47,7 @@ Singer's \caption{Mechanism for ridge regression} \begin{algorithmic}[1] \State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$ - \State $x^* \gets \argmax_{x\in[0,1]^n} \{L_{\mathcal{N}\setminus\{i^*\}}(x) + \State $x^* \gets \argmax_{x\in[0,1]^{|\mathcal{N}|}} \{L_{\mathcal{N}\setminus\{i^*\}}(x) \,|\, c(x)\leq B\}$ \Statex \If{$L(x^*) < CV(i^*)$} @@ -118,7 +118,7 @@ The mechanism is monotone. \end{displaymath} in an earlier iteration of the greedy heuristic. Let us denote by $S_i$ (resp. $S_i'$) the set to which $i$ is added when reporting cost $c_i$ - (resp. $c_i'$). We have $S_i'\subset S_i$. Moreover: + (resp. $c_i'$). We have $S_i'\subseteq S_i$. Moreover: \begin{align*} c_i' & \leq c_i \leq \frac{B}{2}\frac{V(S_i\cup\{i\})-V(S_i)}{V(S_i\cup\{i\})}\\ @@ -245,30 +245,30 @@ of the objective function and thus ensures a constant approximation of the value function. The difficulty resides in showing that the ratio of the two relaxations is bounded. -We say that $R_\mathcal{N}:[0,1]^n\rightarrow\mathbf{R}$ is a relaxation of the +We say that $R_\mathcal{N}:[0,1]^{|\mathcal{N}|}\rightarrow\reals$ is a relaxation of the value function $V$ over $\mathcal{N}$ if it coincides with $V$ at binary -points. Formally, for any $S\subset\mathcal{N}$, let $\mathbf{1}_S$ denote the +points. Formally, for any $S\subseteq\mathcal{N}$, let $\mathbf{1}_S$ denote the indicator vector of $S$. $R_\mathcal{N}$ is a relaxation of $V$ over $\mathcal{N}$ iff: \begin{displaymath} - \forall S\subset\mathcal{N},\; R_\mathcal{N}(\mathbf{1}_S) = V(S) + \forall S\subseteq\mathcal{N},\; R_\mathcal{N}(\mathbf{1}_S) = V(S) \end{displaymath} We can extend the optimisation problem defined above to a relaxation by extending the cost function: \begin{displaymath} - \forall \lambda\in[0,1]^n,\; c(\lambda) + \forall \lambda\in[0,1]^{|\mathcal{N}|},\; c(\lambda) = \sum_{i\in\mathcal{N}}\lambda_ic_i \end{displaymath} The optimisation problem becomes: \begin{displaymath} OPT(R_\mathcal{N}, B) = - \max_{\lambda\in[0,1]^n}\left\{R_\mathcal{N}(\lambda)\,|\, c(\lambda)\leq B\right\} + \max_{\lambda\in[0,1]^{|\mathcal{N}|}}\left\{R_\mathcal{N}(\lambda)\,|\, c(\lambda)\leq B\right\} \end{displaymath} The relaxations we will consider here rely on defining a probability distribution over subsets of $\mathcal{N}$. -Let $\lambda\in[0,1]^n$, let us define: +Let $\lambda\in[0,1]^{|\mathcal{N}|}$, let us define: \begin{displaymath} P_\mathcal{N}^\lambda(S) = \prod_{i\in S}\lambda_i \prod_{i\in\mathcal{N}\setminus S}(1-\lambda_i) @@ -284,17 +284,17 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \begin{align*} F_\mathcal{N}(\lambda) & = \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[\log\det A(S)\big]\\ - & = \sum_{S\subset\mathcal{N}} P_\mathcal{N}^\lambda(S) V(S)\\ - & = \sum_{S\subset\mathcal{N}} P_\mathcal{N}^\lambda(S) \log\det A(S)\\ + & = \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) V(S)\\ + & = \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) \log\det A(S)\\ \end{align*} \item the \emph{concave relaxation} of $V$: \begin{align*} L_{\mathcal{N}}(\lambda) & = \log\det \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[A(S)\big]\\ - & = \log\det\left(\sum_{S\subset N} + & = \log\det\left(\sum_{S\subseteq N} P_\mathcal{N}^\lambda(S)A(S)\right)\\ & = \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}} - \lambda_ix_ix_i^*\right)\\ + \lambda_ix_i\T{x_i}\right)\\ & \defeq \log\det \tilde{A}(\lambda) \end{align*} \end{itemize} @@ -315,8 +315,8 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \end{proof} \begin{lemma}[Rounding]\label{lemma:rounding} - For any feasible $\lambda\in[0,1]^n$, there exists a feasible - $\bar{\lambda}\in[0,1]^n$ such that at most one of its component is + For any feasible $\lambda\in[0,1]^{|\mathcal{N}|}$, there exists a feasible + $\bar{\lambda}\in[0,1]^{|\mathcal{N}|}$ such that at most one of its component is fractional, that is, lies in $(0,1)$ and: \begin{displaymath} F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda}) @@ -373,7 +373,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \begin{lemma}\label{lemma:relaxation-ratio} The following inequality holds: \begin{displaymath} - \forall\lambda\in[0,1]^n,\; + \forall\lambda\in[0,1]^{|\mathcal{N}|},\; \frac{\log\big(1+\mu\big)}{2\mu} \,L_\mathcal{N}(\lambda)\leq F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda) @@ -422,9 +422,9 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: Hence: \begin{multline*} \partial_i F_\mathcal{N} = - \sum_{\substack{S\subset\mathcal{N}\\ i\in S}} + \sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}} P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)\\ - - \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}} + - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}} P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\ \end{multline*} @@ -432,9 +432,9 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: $S'\cup\{i\}$, we can write: \begin{multline*} \partial_i F_\mathcal{N} = - \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S\cup\{i\})\\ - - \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}} + - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}} P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\ \end{multline*} @@ -442,50 +442,50 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: $S$: \begin{displaymath} \partial_i F_\mathcal{N}(\lambda) = - \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_{\mathcal{N}\setminus\{i\}}^\lambda(S) - \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big) + \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big) \end{displaymath} The computation of the derivative of $L_\mathcal{N}$ uses standard matrix calculus and gives: \begin{displaymath} \partial_i L_\mathcal{N}(\lambda) - = \mu x_i^* \tilde{A}(\lambda)^{-1}x_i + = \mu \T{x_i}\tilde{A}(\lambda)^{-1}x_i \end{displaymath} Using the following inequalities: \begin{gather*} - \forall S\subset\mathcal{N}\setminus\{i\},\quad + \forall S\subseteq\mathcal{N}\setminus\{i\},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})\\ - \forall S\subset\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S) + \forall S\subseteq\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S) \geq P_\mathcal{N}^\lambda(S)\\ - \forall S\subset\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\ + \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\ \end{gather*} we get: \begin{align*} \partial_i F_\mathcal{N}(\lambda) - & \geq \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + & \geq \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) - \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\ + \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)\\ & \geq \frac{1}{2} - \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S) - \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\ + \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)\\ &\hspace{-3.5em}+\frac{1}{2} - \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}} + \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_\mathcal{N}^\lambda(S\cup\{i\}) - \log\Big(1 + \mu x_i^*A(S\cup\{i\})^{-1}x_i\Big)\\ + \log\Big(1 + \mu \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\ &\geq \frac{1}{2} - \sum_{S\subset\mathcal{N}} + \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) - \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\ + \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)\\ \end{align*} Using that $A(S)\geq I_d$ we get that: \begin{displaymath} - \mu x_i^*A(S)^{-1}x_i \leq \mu + \mu \T{x_i}A(S)^{-1}x_i \leq \mu \end{displaymath} Moreover: @@ -498,7 +498,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \begin{displaymath} \partial_i F_\mathcal{N}(\lambda) \geq \frac{\log\big(1+\mu\big)}{2\mu} - x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i + \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i \end{displaymath} Finally, using that the inverse is a matrix convex function over symmetric @@ -506,7 +506,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: \begin{align*} \partial_i F_\mathcal{N}(\lambda) &\geq \frac{\log\big(1+\mu\big)}{2\mu} - x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i\\ + \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i\\ & \geq \frac{\log\big(1+\mu\big)}{2\mu} \partial_i L_\mathcal{N}(\lambda) \end{align*} @@ -515,7 +515,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$: We can now prove lemma TODO from previous section. \begin{proof} - Let us consider a feasible point $\lambda^*\in[0,1]^n$ such that $L_\mathcal{N}(\lambda^*) + Let us consider a feasible point $\lambda^*\in[0,1]^{|\mathcal{N}|}$ such that $L_\mathcal{N}(\lambda^*) = OPT(L_\mathcal{N}, B)$. By applying lemma~\ref{lemma:relaxation-ratio} and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most one fractional component such that: |
