summaryrefslogtreecommitdiffstats
path: root/main.tex
diff options
context:
space:
mode:
authorStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2012-10-30 08:28:13 -0700
committerStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2012-10-30 08:28:13 -0700
commit2d54b5d27ffd2782aec0bab8200b5b9e55585805 (patch)
tree7921aeb0ed2a13a0e9ecb29c2ee26dbe0acaf6ae /main.tex
parentdacff6f8d498ef281066742305db90d1121d7f3b (diff)
parentfe8aa3a0134a9493a2443a0965392254a7125094 (diff)
downloadrecommendation-2d54b5d27ffd2782aec0bab8200b5b9e55585805.tar.gz
conf
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex76
1 files changed, 38 insertions, 38 deletions
diff --git a/main.tex b/main.tex
index 189156c..148aedc 100644
--- a/main.tex
+++ b/main.tex
@@ -37,7 +37,7 @@ Here, we use a relaxation of the objective function which is tailored to the
problem of ridge regression. We define:
\begin{displaymath}
\forall\lambda\in[0,1]^{|\mathcal{N}|}\,\quad L_{\mathcal{N}}(\lambda) \defeq
- \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}} \lambda_i x_i x_i^*\right)
+ \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}} \lambda_i x_i \T{x_i}\right)
\end{displaymath}
We can now present the mechanism we use, which has a same flavor to Chen's and
@@ -47,7 +47,7 @@ Singer's
\caption{Mechanism for ridge regression}
\begin{algorithmic}[1]
\State $i^* \gets \argmax_{j\in\mathcal{N}}V(j)$
- \State $x^* \gets \argmax_{x\in[0,1]^n} \{L_{\mathcal{N}\setminus\{i^*\}}(x)
+ \State $x^* \gets \argmax_{x\in[0,1]^{|\mathcal{N}|}} \{L_{\mathcal{N}\setminus\{i^*\}}(x)
\,|\, c(x)\leq B\}$
\Statex
\If{$L(x^*) < CV(i^*)$}
@@ -118,7 +118,7 @@ The mechanism is monotone.
\end{displaymath}
in an earlier iteration of the greedy heuristic. Let us denote by $S_i$
(resp. $S_i'$) the set to which $i$ is added when reporting cost $c_i$
- (resp. $c_i'$). We have $S_i'\subset S_i$. Moreover:
+ (resp. $c_i'$). We have $S_i'\subseteq S_i$. Moreover:
\begin{align*}
c_i' & \leq c_i \leq
\frac{B}{2}\frac{V(S_i\cup\{i\})-V(S_i)}{V(S_i\cup\{i\})}\\
@@ -245,30 +245,30 @@ of the objective function and thus ensures a constant approximation of the
value function. The difficulty resides in showing that the ratio of the two
relaxations is bounded.
-We say that $R_\mathcal{N}:[0,1]^n\rightarrow\mathbf{R}$ is a relaxation of the
+We say that $R_\mathcal{N}:[0,1]^{|\mathcal{N}|}\rightarrow\reals$ is a relaxation of the
value function $V$ over $\mathcal{N}$ if it coincides with $V$ at binary
-points. Formally, for any $S\subset\mathcal{N}$, let $\mathbf{1}_S$ denote the
+points. Formally, for any $S\subseteq\mathcal{N}$, let $\mathbf{1}_S$ denote the
indicator vector of $S$. $R_\mathcal{N}$ is a relaxation of $V$ over
$\mathcal{N}$ iff:
\begin{displaymath}
- \forall S\subset\mathcal{N},\; R_\mathcal{N}(\mathbf{1}_S) = V(S)
+ \forall S\subseteq\mathcal{N},\; R_\mathcal{N}(\mathbf{1}_S) = V(S)
\end{displaymath}
We can extend the optimisation problem defined above to a relaxation by
extending the cost function:
\begin{displaymath}
- \forall \lambda\in[0,1]^n,\; c(\lambda)
+ \forall \lambda\in[0,1]^{|\mathcal{N}|},\; c(\lambda)
= \sum_{i\in\mathcal{N}}\lambda_ic_i
\end{displaymath}
The optimisation problem becomes:
\begin{displaymath}
OPT(R_\mathcal{N}, B) =
- \max_{\lambda\in[0,1]^n}\left\{R_\mathcal{N}(\lambda)\,|\, c(\lambda)\leq B\right\}
+ \max_{\lambda\in[0,1]^{|\mathcal{N}|}}\left\{R_\mathcal{N}(\lambda)\,|\, c(\lambda)\leq B\right\}
\end{displaymath}
The relaxations we will consider here rely on defining a probability
distribution over subsets of $\mathcal{N}$.
-Let $\lambda\in[0,1]^n$, let us define:
+Let $\lambda\in[0,1]^{|\mathcal{N}|}$, let us define:
\begin{displaymath}
P_\mathcal{N}^\lambda(S) = \prod_{i\in S}\lambda_i
\prod_{i\in\mathcal{N}\setminus S}(1-\lambda_i)
@@ -284,17 +284,17 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\begin{align*}
F_\mathcal{N}(\lambda)
& = \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[\log\det A(S)\big]\\
- & = \sum_{S\subset\mathcal{N}} P_\mathcal{N}^\lambda(S) V(S)\\
- & = \sum_{S\subset\mathcal{N}} P_\mathcal{N}^\lambda(S) \log\det A(S)\\
+ & = \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) V(S)\\
+ & = \sum_{S\subseteq\mathcal{N}} P_\mathcal{N}^\lambda(S) \log\det A(S)\\
\end{align*}
\item the \emph{concave relaxation} of $V$:
\begin{align*}
L_{\mathcal{N}}(\lambda)
& = \log\det \mathbb{E}_{S\sim P_\mathcal{N}^\lambda}\big[A(S)\big]\\
- & = \log\det\left(\sum_{S\subset N}
+ & = \log\det\left(\sum_{S\subseteq N}
P_\mathcal{N}^\lambda(S)A(S)\right)\\
& = \log\det\left(I_d + \mu\sum_{i\in\mathcal{N}}
- \lambda_ix_ix_i^*\right)\\
+ \lambda_ix_i\T{x_i}\right)\\
& \defeq \log\det \tilde{A}(\lambda)
\end{align*}
\end{itemize}
@@ -315,8 +315,8 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\end{proof}
\begin{lemma}[Rounding]\label{lemma:rounding}
- For any feasible $\lambda\in[0,1]^n$, there exists a feasible
- $\bar{\lambda}\in[0,1]^n$ such that at most one of its component is
+ For any feasible $\lambda\in[0,1]^{|\mathcal{N}|}$, there exists a feasible
+ $\bar{\lambda}\in[0,1]^{|\mathcal{N}|}$ such that at most one of its component is
fractional, that is, lies in $(0,1)$ and:
\begin{displaymath}
F_{\mathcal{N}}(\lambda)\leq F_{\mathcal{N}}(\bar{\lambda})
@@ -373,7 +373,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\begin{lemma}\label{lemma:relaxation-ratio}
The following inequality holds:
\begin{displaymath}
- \forall\lambda\in[0,1]^n,\;
+ \forall\lambda\in[0,1]^{|\mathcal{N}|},\;
\frac{\log\big(1+\mu\big)}{2\mu}
\,L_\mathcal{N}(\lambda)\leq
F_\mathcal{N}(\lambda)\leq L_{\mathcal{N}}(\lambda)
@@ -422,9 +422,9 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
Hence:
\begin{multline*}
\partial_i F_\mathcal{N} =
- \sum_{\substack{S\subset\mathcal{N}\\ i\in S}}
+ \sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)\\
- - \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
+ - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\
\end{multline*}
@@ -432,9 +432,9 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
$S'\cup\{i\}$, we can write:
\begin{multline*}
\partial_i F_\mathcal{N} =
- \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S\cup\{i\})\\
- - \sum_{\substack{S\subset\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
+ - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\
\end{multline*}
@@ -442,50 +442,50 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
$S$:
\begin{displaymath}
\partial_i F_\mathcal{N}(\lambda) =
- \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
- \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)
+ \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)
\end{displaymath}
The computation of the derivative of $L_\mathcal{N}$ uses standard matrix
calculus and gives:
\begin{displaymath}
\partial_i L_\mathcal{N}(\lambda)
- = \mu x_i^* \tilde{A}(\lambda)^{-1}x_i
+ = \mu \T{x_i}\tilde{A}(\lambda)^{-1}x_i
\end{displaymath}
Using the following inequalities:
\begin{gather*}
- \forall S\subset\mathcal{N}\setminus\{i\},\quad
+ \forall S\subseteq\mathcal{N}\setminus\{i\},\quad
P_{\mathcal{N}\setminus\{i\}}^\lambda(S)\geq
P_{\mathcal{N}\setminus\{i\}}^\lambda(S\cup\{i\})\\
- \forall S\subset\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
+ \forall S\subseteq\mathcal{N},\quad P_{\mathcal{N}\setminus\{i\}}^\lambda(S)
\geq P_\mathcal{N}^\lambda(S)\\
- \forall S\subset\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\
+ \forall S\subseteq\mathcal{N},\quad A(S)^{-1} \geq A(S\cup\{i\})^{-1}\\
\end{gather*}
we get:
\begin{align*}
\partial_i F_\mathcal{N}(\lambda)
- & \geq \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ & \geq \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}^\lambda(S)
- \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\
+ \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)\\
& \geq \frac{1}{2}
- \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}^\lambda(S)
- \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\
+ \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)\\
&\hspace{-3.5em}+\frac{1}{2}
- \sum_{\substack{S\subset\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
+ \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}}
P_\mathcal{N}^\lambda(S\cup\{i\})
- \log\Big(1 + \mu x_i^*A(S\cup\{i\})^{-1}x_i\Big)\\
+ \log\Big(1 + \mu \T{x_i}A(S\cup\{i\})^{-1}x_i\Big)\\
&\geq \frac{1}{2}
- \sum_{S\subset\mathcal{N}}
+ \sum_{S\subseteq\mathcal{N}}
P_\mathcal{N}^\lambda(S)
- \log\Big(1 + \mu x_i^*A(S)^{-1}x_i\Big)\\
+ \log\Big(1 + \mu \T{x_i}A(S)^{-1}x_i\Big)\\
\end{align*}
Using that $A(S)\geq I_d$ we get that:
\begin{displaymath}
- \mu x_i^*A(S)^{-1}x_i \leq \mu
+ \mu \T{x_i}A(S)^{-1}x_i \leq \mu
\end{displaymath}
Moreover:
@@ -498,7 +498,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\begin{displaymath}
\partial_i F_\mathcal{N}(\lambda) \geq
\frac{\log\big(1+\mu\big)}{2\mu}
- x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i
+ \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)^{-1}\bigg)x_i
\end{displaymath}
Finally, using that the inverse is a matrix convex function over symmetric
@@ -506,7 +506,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
\begin{align*}
\partial_i F_\mathcal{N}(\lambda) &\geq
\frac{\log\big(1+\mu\big)}{2\mu}
- x_i^*\bigg(\sum_{S\subset\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i\\
+ \T{x_i}\bigg(\sum_{S\subseteq\mathcal{N}}P_\mathcal{N}^\lambda(S)A(S)\bigg)^{-1}x_i\\
& \geq \frac{\log\big(1+\mu\big)}{2\mu}
\partial_i L_\mathcal{N}(\lambda)
\end{align*}
@@ -515,7 +515,7 @@ We will consider two relaxations of the value function $V$ over $\mathcal{N}$:
We can now prove lemma TODO from previous section.
\begin{proof}
- Let us consider a feasible point $\lambda^*\in[0,1]^n$ such that $L_\mathcal{N}(\lambda^*)
+ Let us consider a feasible point $\lambda^*\in[0,1]^{|\mathcal{N}|}$ such that $L_\mathcal{N}(\lambda^*)
= OPT(L_\mathcal{N}, B)$. By applying lemma~\ref{lemma:relaxation-ratio}
and lemma~\ref{lemma:rounding} we get a feasible point $\bar{\lambda}$ with at most
one fractional component such that: