diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2012-11-04 02:36:25 +0100 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2012-11-04 02:37:33 +0100 |
| commit | d0ebf90c9590505f32c8d22a0f493e8c6276c969 (patch) | |
| tree | 624e7c535b47659d1d7075cc3e348a111f45c15c /main.tex | |
| parent | f81c86d3129d01e84b646c1033e0d476cb9a289a (diff) | |
| download | recommendation-d0ebf90c9590505f32c8d22a0f493e8c6276c969.tar.gz | |
Add the argument about the faces of the hypercube
Diffstat (limited to 'main.tex')
| -rw-r--r-- | main.tex | 27 |
1 files changed, 17 insertions, 10 deletions
@@ -420,15 +420,24 @@ i\leq |\mathcal{N}|} \lambda_i c_i \leq B$. a critical point of the ratio $F_\mathcal{N}(\lambda)/L_\mathcal{N}(\lambda)$. Such a critical point is characterized by: - \begin{displaymath} + \begin{equation}\label{eq:lhopital} \frac{F_\mathcal{N}(\lambda)}{L_\mathcal{N}(\lambda)} = \frac{\partial_i F_\mathcal{N}(\lambda)}{\partial_i L_\mathcal{N}(\lambda)} \geq \frac{1}{2} - \end{displaymath} - - The case of the faces of the hypercube can be dealt with by induction - (TODO). - + \end{equation} + Finally, if the minimum is attained on a face of the hypercube (a face is + defined as a subset of the hypercube where one of the variable is fixed to + 0 or 1), without loss of generality, we can assume that the minimum is + attained on the face where the $|\mathcal{N}|$-th variable has been fixed + to 0 or 1. Then, either the minimum is attained at a point interior to the + face or on a boundary of the face. In the first case, relation + \eqref{eq:lhopital} still characterizes the minimum for $i< |\mathcal{N}|$. + In the second case, by repeating the argument again by induction, we see + that all is left to do is to show that the bound holds for the vertices of + the cube (the faces of dimension 1). The vertices are exactly the binary + points, for which we know that both relaxations are equal to the value + function $V$. Hence, the ratio is equal to 1 on the vertices. + Let us start by computing the derivatives of $F_\mathcal{N}$ and $L_\mathcal{N}$ with respect to the $i$-th component. @@ -442,14 +451,13 @@ i\leq |\mathcal{N}|} \lambda_i c_i \leq B$. i\in \mathcal{N}\setminus S \\ \end{aligned}\right. \end{displaymath} - Hence: \begin{multline*} \partial_i F_\mathcal{N} = \sum_{\substack{S\subseteq\mathcal{N}\\ i\in S}} P_{\mathcal{N}\setminus\{i\}}^\lambda(S\setminus\{i\})V(S)\\ - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\ + P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S) \end{multline*} Now, using that every $S$ such that $i\in S$ can be uniquely written as @@ -459,9 +467,8 @@ i\leq |\mathcal{N}|} \lambda_i c_i \leq B$. \sum_{\substack{S\subseteq\mathcal{N}\\ i\in\mathcal{N}\setminus S}} P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S\cup\{i\})\\ - \sum_{\substack{S\subseteq\mathcal{N}\\ i\in \mathcal{N}\setminus S}} - P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S)\\ + P_{\mathcal{N}\setminus\{i\}}^\lambda(S)V(S) \end{multline*} - Finally, by using the expression for the marginal contribution of $i$ to $S$: \begin{displaymath} |
