summaryrefslogtreecommitdiffstats
path: root/main.tex
diff options
context:
space:
mode:
authorStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2012-11-05 11:21:44 -0800
committerStratis Ioannidis <stratis@stratis-Latitude-E6320.(none)>2012-11-05 11:21:44 -0800
commitec33fdd2abaa9342ea6613bee4e59a5125009de9 (patch)
treea4e5918dcb273e816a2011747021dd79e2d55f88 /main.tex
parentaae88b4620e3b267915c59678bde1a6f0d2c14e3 (diff)
downloadrecommendation-ec33fdd2abaa9342ea6613bee4e59a5125009de9.tar.gz
muthu changes
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex7
1 files changed, 5 insertions, 2 deletions
diff --git a/main.tex b/main.tex
index 6fdf39c..384800b 100644
--- a/main.tex
+++ b/main.tex
@@ -367,7 +367,7 @@ Hence, the total payment is bounded by the telescopic sum:
\end{proof}
Finally, we prove the approximation ratio of the mechanism. We use the
-following lemma which we prove later, which establishes that $OPT'$, the optimal value \eqref{relax} of the fractional relaxation $L$ under the budget constraints
+following lemma which establishes that $OPT'$, the optimal value \eqref{relax} of the fractional relaxation $L$ under the budget constraints
is not too far from $OPT$.
\begin{lemma}\label{lemma:relaxation}
%\begin{displaymath}
@@ -375,9 +375,12 @@ following lemma which we prove later, which establishes that $OPT'$, the optimal
+ 2\max_{i\in\mathcal{N}}V(i)$
%\end{displaymath}
\end{lemma}
+The proof of Lemma~\ref{lemma:relaxation} is our main technical contribution, and can be found in Section \ref{sec:relaxation}.
+
+
+\paragraph{Finishing Proof of }
Note that the lower bound $OPT' \geq OPT
$ also holds trivially, as $L$ is a fractional relaxation of $V$ over $\mathcal{N}$.
-The proof of Lemma~\ref{lemma:relaxation} is our main technical contribution, and can be found in Section \ref{sec:relaxation}.
Using this lemma, we can complete the proof of Theorem~\ref{thm:main} by showing that, %\begin{lemma}\label{lemma:approx}
%C_{\textrm{max}} = \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{8e}{C
%(e-1) -10e +2}\right)\right)