diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2013-06-10 16:48:12 +0200 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2013-06-10 16:48:12 +0200 |
| commit | 6a7822112496198f118bdcedc2600f6b6770dd39 (patch) | |
| tree | f2e938a8ba7e4578dfe43a7b0f92aa154228aa70 /old_notes.tex | |
| parent | 55473070decc94d4bf261cdd01d718305ea07073 (diff) | |
| download | recommendation-6a7822112496198f118bdcedc2600f6b6770dd39.tar.gz | |
Repository cleanup, preparing for SODA submission
Previous submissions and reviews are available in dedicated subfolders
Diffstat (limited to 'old_notes.tex')
| -rw-r--r-- | old_notes.tex | 377 |
1 files changed, 0 insertions, 377 deletions
diff --git a/old_notes.tex b/old_notes.tex deleted file mode 100644 index 8dc2c7b..0000000 --- a/old_notes.tex +++ /dev/null @@ -1,377 +0,0 @@ -\documentclass{article} -\usepackage[utf8]{inputenc} -\usepackage{amsmath,amsthm,amsfonts} -\usepackage{comment} -\newtheorem{lemma}{Lemma} -\newtheorem{prop}{Proposition} -\newcommand{\var}{\mathop{\mathrm{Var}}} -\newcommand{\condexp}[2]{\mathop{\mathbb{E}}\left[#1|#2\right]} -\newcommand{\expt}[1]{\mathop{\mathbb{E}}\left[#1\right]} -\newcommand{\norm}[1]{\lVert#1\rVert} -\newcommand{\tr}[1]{#1^*} -\newcommand{\ip}[2]{\langle #1, #2 \rangle} -\newcommand{\mse}{\mathop{\mathrm{MSE}}} -\newcommand{\trace}{\mathop{\mathrm{tr}}} -\begin{document} - - -\section{pomme} - -In this section, we will consider that we are given a \emph{universe} -set $U$ such that all the sets we consider are subsets or $U$ and all -functions defined on sets are defined on the power set of $U$, -$\mathfrak{P}(U)$. - -A function $f$ defined on $\mathfrak{P}(U)$ will be said -\emph{increasing} if it is increasing with regards to inclusion, that -is: -\begin{displaymath} - \forall\,S\subseteq T,\quad f(S)\leq f(T) -\end{displaymath} -A \emph{decreasing} function on $\mathfrak{P}(U)$ is defined similarly. - -\begin{prop} - Let $R:\mathbf{R}\rightarrow \mathbf{R}$ be a decreasing concave - function and $f:\mathfrak{P}(U)\rightarrow\mathbf{R}$ be a - decreasing submodular function, then the composed function $R\circ - f$ is increasing and supermodular. -\end{prop} - -\begin{proof} - The increasingness of $R\circ f$ follows immediately from the - decreasingness of $R$ and $f$. - - For the supermodularity, let $S$ and $T$ be two sets such that - $S\subseteq T$. By decreasingness of $f$, we have: - \begin{displaymath} - \forall\,V,\quad f(T)\leq f(S)\quad\mathrm{and}\quad f(T\cup V)\leq f(S\cup V) - \end{displaymath} - - Thus, by concavity of $R$: - \begin{displaymath}\label{eq:base} - \forall\,V,\quad\frac{R\big(f(S)\big)-R\big(f(S\cup V)\big)}{f(S)-f(S\cup V)} - \leq\frac{R\big(f(T)\big)-R\big(f(T\cup V)\big)}{f(T)-f(T\cup V)} - \end{displaymath} - - $f$ is decreasing, so multiplying this last inequality by - $f(S)-f(S\cup V)$ and $f(T)-f(T\cup V)$ yields: - \begin{multline} - \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(T)-f(T\cup V)\big)\\ - \leq \Big(R\big(f(T)\big)-R\big(f(T\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big) - \end{multline} - - $f$ is submodular, so: - \begin{displaymath} - f(T\cup V)-f(T)\leq f(S\cup V) - f(S) - \end{displaymath} - - $R\circ f$ is increasing, so: - \begin{displaymath} - R\big(f(S)\big)-R\big(f(S\cup V)\big)\leq 0 - \end{displaymath} - - By combining the two previous inequalities, we get: - \begin{multline*} - \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)\\ - \leq \Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(T)-f(T\cup V)\big) - \end{multline*} - - Injecting this last inequality into \eqref{eq:base} gives: - \begin{multline*} - \forall V,\quad\Big(R\big(f(S)\big)-R\big(f(S\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big)\\ - \leq \Big(R\big(f(T)\big)-R\big(f(T\cup V)\big)\Big)\big(f(S)-f(S\cup V)\big) - \end{multline*} - - Dividing left and right by $f(S)-f(S\cup V)$ yields: - \begin{displaymath} - \forall V,\quad R\big(f(S)\big)-R\big(f(S\cup V)\big) - \leq R\big(f(T)\big)-R\big(f(T\cup V)\big) - \end{displaymath} - which is exactly the supermodularity of $R\circ f$. -\end{proof} - - - -\section{Understanding the recommender system} - -\subsection{General problem} - -We already have a database $D_n$ of $n$ users. For each user $i$ we -have a set of $k$ explanatory variables (features), this is a vector -$x_i$. - -The problem is the following: we are about to start an experiment where for -some of the users in the database, a variable of interest $y_i$ will -be revealed (it could be for example a medical survey, a website which -buys some data from another website). From the pairs $(x_i, y_i)$ that -we will acquire through the experiment, we are going to compute a -regression function $f_n$ which will allow us to predict for a new $x$ -its associated $y$. The accuracy of this prediction will be measured -by the Mean Squared Error : -\begin{displaymath} - \mse(f_n) = \expt{\big(f_n(x)-y\big)^2} -\end{displaymath} - -We would like to understand the impact of the number of users who take -part in the experiment. Especially, how much does adding a user to the -experiment impacts the MSE. - -\subsection{From the bivariate normal case to linear regression} -If $(X,Y)$ is drawn from a bivariate normal distribution with mean -vector $\mu$ and covariance matrix $\Sigma$. Then, one can -write: -\begin{displaymath} - Y = \condexp{Y}{X} + \big(Y-\condexp{Y}{X}\big) -\end{displaymath} -In this particular case, $\condexp{Y}{X}$ is a linear function of $X$: -\begin{displaymath} -\condexp{Y}{X} = \alpha X + \beta -\end{displaymath} -where $\alpha$ and $\beta$ can be expressed as a function of $\mu$ and -$\Sigma$. Writing $\varepsilon = Y-\condexp{Y}{X}$, it is easy to see -that $\expt{X\varepsilon}=0$. Furthermore $\varepsilon$ is also normally -distributed. Under these assumptions, it can be proven that the least -square estimator for $(\alpha,\beta)$ is optimal (it reaches the -Cramér-Rao bound). - -\subsection{Linear regression} - -We assume a linear model: -\begin{displaymath} - y_i = \beta\cdot x_i + \varepsilon_i -\end{displaymath} - -Where $\varepsilon_i$ is a normal random variable uncorrelated to -$x_i$. We also assume that $\var(\varepsilon_i)$ is constant -(homoscedasticity), $\sigma^2$ will denote the common value. - -From the database we compute the least-squared estimator of $\beta$: -\begin{displaymath} - \hat{\beta}_n = (\tr XX)^{-1}\tr XY -\end{displaymath} -where $X$ is a $n\times k$ matrix ($k$ is the number of explanatory -variables) whose $i$-th row $\tr x_i$ and $Y$ is $(y_1,\ldots,y_n)$. - -The regression function is simply the inner product of $\hat{\beta}_n$ -and the new vector of explanatory variables $x$. - -From there we can compute the MSE: -\begin{displaymath} - \mse(D_n) - =\expt{\left(\beta\cdot x + \varepsilon - \hat\beta_n\cdot x\right)^2} - = \tr x\expt{(\hat\beta_n-\beta)\cdot (\hat\beta_n-\beta)} x + \expt{\varepsilon^2} -\end{displaymath} -where we used that -$\expt{x\varepsilon}=0$. The variance-covariance matrix of -$\hat\beta_n$ is equal to $\sigma^2(\tr XX)^{-1}$. Finally we get: -\begin{displaymath} - \mse(D_n) - = \sigma^2\tr x(\tr XX)^{-1}x + \sigma^2 -\end{displaymath} - -\subsubsection*{Monotonicity} - -We first want to study the impact of adding one observation to the -database. First, notice that: -\begin{displaymath} - \tr XX = \sum_{i=1}^n x_i \tr x_i -\end{displaymath} -Let write $A= \tr X X$. Then, adding $x_0$ to the database will change -$A$ to $A+x_0\tr x_0$. - -The following derivation will make an extensive use of the -Sherman-Morrisson formula \cite{sm} (which can be proven by direct -verification). For any invertible matrix $A$: -\begin{equation}\label{eq:inverse} -(A+x\tr y)^{-1} = A^{-1} - \frac{A^{-1}x\tr yA^{-1}}{1+\tr x A^{-1}y} -\end{equation} - -$A^{-1}$ is the inverse of a positive semidefinite matrix. Hence it is -also positive semidefinite. We will denote by $\ip{x}{y}$ the scalar product defined by $A^{-1}$, -that is: -\begin{displaymath} - \ip{x}{y} = \tr x A^{-1} y = \tr y A^{-1} x -\end{displaymath} - -Using \eqref{eq:inverse} we get: -\begin{displaymath} -\begin{split} - \tr x (A + x_0\tr x_0)^{-1} x & = \tr x A^{-1} x - \frac{\tr x - A^{-1}x_0\tr x_0A^{-1} x}{1+\tr x_0 A^{-1}x_0 }\\ -& = \tr x A^{-1} x - \frac{\ip{x}{x_0}^2}{1+\norm{x_0}^2} -\end{split} -\end{displaymath} - -Thus: -\begin{equation}\label{eq:decrease} -\mse(D_n\cup\{x_0\}) = \mse(D_n) - \frac{\sigma^2\ip{x}{x_0}^2}{1+\norm{x_0}^2} -\end{equation} - -\emph{Adding one observation to the database decreases the MSE.} - -\subsubsection*{Submodularity} - -Let $D_m$ a database of size $m$ containing $D_n$: $D_m$ is obtained -from $D_n$ by adding some observations. We would like to show that -adding one observation to $D_m$ yields a smaller decrease in MSE than -adding the same observation to $D_n$: -\begin{displaymath} - \mse(D_m)-\mse(D_m\cup\{x_0\})\leq \mse(D_n)-\mse(D_n\cup\{x_0\}) -\end{displaymath} - -First, remark that it is necessary and sufficient to prove this property when $D_n$ and -$D_m$ differ by only one observation. Indeed, if the property is true -in general, then it will also be true when the two databases differ by -only one observation. Conversely, if the property is true when the two -databases differ by only one observation, then applying the property -repeatedly yields the general property. - -Using \eqref{eq:decrease}, the decrease of MSE when adding $x_0$ to -the database is: -\begin{displaymath} - \frac{\sigma^2(\tr x A^{-1} x_0)^2}{1+\tr x_0 A^{-1} x_0} -\end{displaymath} - -If we denote by $z$ the additional observation present in $D_m$ and -not in $D_n$, then we would like to prove that: -\begin{displaymath} - \frac{\sigma^2(\tr x A^{-1} x_0)^2}{1+\tr x_0 A^{-1} x_0} -\geq \frac{\sigma^2\left(\tr x (A+z\tr z)^{-1} x_0\right)^2}{1+\tr x_0 (A+z\tr z)^{-1} x_0} -\end{displaymath} - -Using the same notations as before, this is equivalent -to: -\begin{displaymath} - \frac{\ip{x}{x_0}^2}{1+\norm{x_0}^2} -\geq \frac{\left(\left(1+\norm{z}^2\right)\ip{x}{x_0}-\ip{x}{z}\ip{z}{x_0}\right)^2} -{\left(1+\norm{z}^2\right)\big((1+\norm{z}^2)(1+\norm{x_0}^2)-\ip{x_0}{z}^2\big)} -\end{displaymath} - -By the Cauchy-Schwarz inequality: -\begin{displaymath} - (1+\norm{z}^2)(1+\norm{x_0}^2)-\ip{x_0}{z}^2 > 0 -\end{displaymath} - -Thus the previous inequality is consequently equivalent to: -\begin{multline*} - \left(1+\norm{z}^2\right)^2\left(1+\norm{x_0}^2\right)\ip{x}{x_0}^2 --\left(1+\norm{z}^2\right)\ip{x_0}{z}^2\ip{x}{x_0}^2\\ -\geq \left(1+\norm{x_0}^2\right)\left(1+\norm{z}^2\right)^2\ip{x}{x_0}^2 -+ \left(1+\norm{x_0}^2\right)\ip{x}{z}^2\ip{z}{x_0}^2\\ --2\left(1+\norm{x_0}^2\right)\left(1+\norm{z}^2\right)\ip{x}{x_0}\ip{x}{z}\ip{z}{x_0} -\end{multline*} - -\begin{multline*} -2\left(1+\norm{x_0}^2\right)\left(1+\norm{z}^2\right)\ip{x}{x_0}\ip{x}{z}\ip{z}{x_0}\\ -\geq \left(1+\norm{x_0}^2\right)\ip{x}{z}^2\ip{z}{x_0}^2 -+ \left(1+\norm{z}^2\right)\ip{x_0}{z}^2\ip{x}{x_0}^2 -\end{multline*} - -This last inequality is not true in general. As soon as $x$, $x_0$ and -$z$ span a 2-dimensional space, it is possible that for example -$\ip{x}{x_0}$ and $\ip{x}{z}$ are positive and $\ip{z}{x_0}$ -negative. Then the left term of the inequality will be negative and -cannot be greater than the right term which is always positive. - -In the one-dimensional case, the inner product $\ip{x}{z}$ can be -written as $\lambda xz$ for some positive $\lambda$. Then the last -inequality becomes: -\begin{displaymath} - 2\geq \frac{\lambda z^2}{1+\lambda z^2} -+ \frac{\lambda x_0^2}{1+\lambda x_0^2} -\end{displaymath} -which is trivially true (a more direct proof for the one-dimensional -case is of course possible). - -In order to understand more precisely under which assumptions the -above inequality could become true, it is convenient to look at it -from the quadratic form perspective. Indeed this inequality can be -rewritten as: - -\begin{equation}\label{eq-inequality} -\tr x B x \geq 0 -\end{equation} - -with: -\begin{align*} - B = &\, \left(1+\norm{x_0}^2\right)\left(1+\norm{z}^2\right)\ip{x_0}{z} - (x_0\tr z+z\tr x_0)\\ -& -\ip{x_0}{z}^2\Big( \left(1+\norm{x_0}^2\right)z\tr z + \left(1+\norm{z}^2\right)x_0\tr z\big) -\end{align*} - -This quadratic form is degenerate, its kernel is $x_0^{\bot}\cap -z^\bot$ which is of dimension $k-2$. - -\paragraph{Case when $\norm{x_0}=\norm{z}=1$} In this case, it suffices to study the quadratic form given by matrix -$B'$ with: -\begin{displaymath} - B' = 2\ip{x_0}{z}(x_0\tr z+z\tr x_0) -\ip{x_0}{z}^2(z\tr z + x_0\tr x_0) -\end{displaymath} - -Writing $a = \ip{x_0}{z}$, the two non-zero eigenvalues are: -\begin{align*} - \lambda_1 & = -2a^3 + 2a^2 + 4a = -2a(a+1)(a-2)\\ - \lambda_2 & = 2a^3 + 2a^2 - 4a = 2a(a-1)(a+2) -\end{align*} - -which are respectively associated with the eigenvectors: -\begin{align*} - x_1 & = x_0+z\\ - x_2 & = x_0 - z -\end{align*} - -By the Cauchy-Schwarz inequality, $a\in]-1,1[$, and the two -eigenvalues are of opposite sign on this interval. Thus inequality -\eqref{eq-inequality} does not hold for all $x$. - -\paragraph{In expectation?} If we assume a prior knowledge on the -distribution of $x$, writing $\Sigma$ the variance-covariance matrix -of $x$ and $\mu$ its mean vector, then taking the expectation of -\eqref{eq-inequality} we get: -\begin{displaymath} - \expt{\tr x B' x} = \trace(B'\Sigma) + \tr\mu B'\mu -\end{displaymath} - -\nocite{shapley,inverse,recommendation,cook,shapleyor,subsetselection11,lse} -\bibliographystyle{plain} -\bibliography{notes.bib} - -\section*{Appendix} - -\paragraph{Previous attempt at taming the submodularity} - -The inequality only depends on the projection of $x$ on the plane -spanned by $x_0$ and $z$. Writing -\begin{displaymath} - x = \lambda x_0 + \mu z + v,\quad\mathrm{with}\quad v \,\bot\, - \mathrm{span}\{x_0, v\} -\end{displaymath} -the previous inequality becomes: -\begin{multline*} -2\left(1+\norm{x_0}^2\right)\left(1+\norm{z}^2\right)\ip{x_0}{z} -\left(\lambda\norm{x_0}^2+\mu\ip{x_0}{z}\right) -\left(\lambda\ip{x_0}{z}+\mu\norm{z}^2\right)\\ -- \left(1+\norm{x_0}^2\right)\ip{x_0}{z}^2\left(\lambda\ip{x_0}{z}+\mu\norm{z}^2\right)^2\\ -- -\left(1+\norm{z}^2\right)\ip{x_0}{z}^2\left(\lambda\norm{x_0}^2+\mu\ip{x_0}{z}\right)^2\geq 0 -\end{multline*} - -By expanding and reordering the terms, we obtain a quadratic function -of $\lambda$ and $\mu$: -\begin{multline*} - \lambda^2\ip{x_0}{z}^2\left[2\norm{x_0}^2+\norm{x_0}^4+\norm{x_0}^2\norm{z}^2 - +(1+\norm{x_0})^2\big(\norm{x_0}^2\norm{z}^2-\ip{x_0}{z}^2\big)\right]\\ -+\mu^2\ip{x_0}{z}^2\left[2\norm{z}^2+\norm{z}^4+\norm{x_0}^2\norm{z}^2 - +(1+\norm{z})^2\big(\norm{x_0}^2\norm{z}^2-\ip{x_0}{z}^2\big)\right]\\ -+2\lambda\mu\ip{x_0}{z}\Big[\norm{x_0}^2\norm{z}^2 -\big(\norm{x_0}^2\norm{z}^2-\ip{x_0}{z}^2\big)\\ -+\ip{x_0}{z}^2+\norm{x_0}^2\norm{z}^2 -\big(1+\norm{x_0}^2+\norm{z}^2\big)\Big]\geq 0 -\end{multline*} - -This inequality will be true for all $\lambda$ and $\mu$ if and only -if the quadratic form is positive semidefinite. As its trace is -positive, this is equivalent to the positiveness of its determinant. - - -\end{document}
\ No newline at end of file |
