diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2013-06-28 00:16:44 +0200 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2013-06-28 00:16:44 +0200 |
| commit | 07d48e21fb6fc62b1a85b9d80c25560529a9a0b5 (patch) | |
| tree | 08d636c66b2933c370039bbd0bfb886b34b25505 /proofs.tex | |
| parent | d5f4afbbf188d745439e0e15b1857fb696477d70 (diff) | |
| download | recommendation-07d48e21fb6fc62b1a85b9d80c25560529a9a0b5.tar.gz | |
Moving the proofs to the appendix, improving the flow
Diffstat (limited to 'proofs.tex')
| -rw-r--r-- | proofs.tex | 122 |
1 files changed, 0 insertions, 122 deletions
@@ -1,122 +0,0 @@ -\subsection{Proof of Theorem~\ref{thm:main}}\label{sec:proofofmainthm} - -We now present the proof of Theorem~\ref{thm:main}. $\delta$-truthfulness and -individual rationality follow from $\delta$-monotonicity and threshold -payments. $\delta$-monotonicity and budget feasibility follow the same steps as the -analysis of \citeN{chen}; for the sake of completeness, we restate their proof -in the Appendix. - -The complexity of the mechanism is given by the following lemma. - -\begin{lemma}[Complexity]\label{lemma:complexity} - For any $\varepsilon > 0$ and any $\delta>0$, the complexity of the mechanism is - $O\big(poly(n, d, \log\log\frac{1}{b\varepsilon\delta})\big)$ -\end{lemma} - -\begin{proof} - The value function $V$ in \eqref{modified} can be computed in time - $O(\text{poly}(n, d))$ and the mechanism only involves a linear - number of queries to the function $V$. - - By Proposition~\ref{prop:monotonicity}, line 3 of Algorithm~\ref{mechanism} - can be computed in time - $O(\text{poly}(n, d, \log\log \varepsilon^{-1}))$. Hence the allocation - function's complexity is as stated. - %Payments can be easily computed in time $O(\text{poly}(n, d))$ as in prior work. -\junk{ - Using Singer's characterization of the threshold payments - \cite{singer-mechanisms}, one can verify that they can be computed in time - $O(\text{poly}(n, d))$. - } -\end{proof} - -Finally, we prove the approximation ratio of the mechanism. - -We use the following lemma from \cite{chen} which bounds $OPT$ in terms of -the value of $S_G$, as computed in Algorithm \ref{mechanism}, and $i^*$, the -element of maximum value. - -\begin{lemma}[\cite{chen}]\label{lemma:greedy-bound} -Let $S_G$ be the set computed in Algorithm \ref{mechanism} and let -$i^*=\argmax_{i\in\mathcal{N}} V(\{i\})$. We have: -\begin{displaymath} -OPT \leq \frac{e}{e-1}\big( 3 V(S_G) + 2 V(i^*)\big). -\end{displaymath} -\end{lemma} - -Using Proposition~\ref{prop:relaxation} and~\ref{lemma:greedy-bound} we can complete the proof of -Theorem~\ref{thm:main} by showing that, for any $\varepsilon > 0$, if -$OPT_{-i}'$, the optimal value of $L$ when $i^*$ is excluded from -$\mathcal{N}$, has been computed to a precision $\varepsilon$, then the set -$S^*$ allocated by the mechanism is such that: -\begin{equation} \label{approxbound} -OPT -\leq \frac{10e\!-\!3 + \sqrt{64e^2\!-\!24e\!+\!9}}{2(e\!-\!1)} V(S^*)\! -+ \! \varepsilon . -\end{equation} -To see this, let $L^*_{-i^*}$ be the true maximum value of $L$ subject to -$\lambda_{i^*}=0$, $\sum_{i\in \mathcal{N}\setminus{i^*}}c_i\leq B$. From line -3 of Algorithm~\ref{mechanism}, we have -$L^*_{-i^*}-\varepsilon\leq OPT_{-i^*}' \leq L^*_{-i^*}+\varepsilon$. - -If the condition on line 4 of the algorithm holds, then -\begin{displaymath} - V(i^*) \geq \frac{1}{C}L^*_{-i^*}-\frac{\varepsilon}{C} \geq - \frac{1}{C}OPT_{-i^*} -\frac{\varepsilon}{C}. -\end{displaymath} -Indeed, $L^*_{-i^*}\geq OPT_{-i^*}$ as $L$ is a fractional relaxation of $V$. Also, $OPT \leq OPT_{-i^*} + V(i^*)$, -hence, -\begin{equation}\label{eq:bound1} - OPT\leq (1+C)V(i^*) + \varepsilon. -\end{equation} - -If the condition does not hold, by observing that $L^*_{-i^*}\leq L^*_c$ and -applying Proposition~\ref{prop:relaxation}, we get -\begin{displaymath} - V(i^*)\leq \frac{1}{C}L^*_{-i^*} + \frac{\varepsilon}{C} - \leq \frac{1}{C} \big(2 OPT + 2 V(i^*)\big) + \frac{\varepsilon}{C}. -\end{displaymath} -Applying Lemma~\ref{lemma:greedy-bound}, -\begin{displaymath} - V(i^*) \leq \frac{1}{C}\left(\frac{2e}{e-1}\big(3 V(S_G) - + 2 V(i^*)\big) + 2 V(i^*)\right) + \frac{\varepsilon}{C}. -\end{displaymath} -Thus, if $C$ is such that $C(e-1) -6e +2 > 0$, -\begin{align*} - V(i^*) \leq \frac{6e}{C(e-1)- 6e + 2} V(S_G) - + \frac{(e-1)\varepsilon}{C(e-1)- 6e + 2}. -\end{align*} -Finally, using Lemma~\ref{lemma:greedy-bound} again, we get -\begin{equation}\label{eq:bound2} - OPT(V, \mathcal{N}, B) \leq - \frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2}\right) V(S_G) - + \frac{2e\varepsilon}{C(e-1)- 6e + 2}. -\end{equation} -To minimize the coefficients of $V_{i^*}$ and $V(S_G)$ in \eqref{eq:bound1} -and \eqref{eq:bound2} respectively, we wish to chose $C$ that minimizes -\begin{displaymath} - \max\left(1+C,\frac{3e}{e-1}\left( 1 + \frac{4e}{C (e-1) -6e +2} - \right)\right). -\end{displaymath} -This function has two minima, only one of those is such that $C(e-1) -6e -+2 \geq 0$. This minimum is -\begin{equation}\label{eq:constant} - C = \frac{8e-1 + \sqrt{64e^2-24e + 9}}{2(e-1)}. -\end{equation} -For this minimum, $\frac{2e\varepsilon}{C^*(e-1)- 6e + 2}\leq \varepsilon.$ -Placing the expression of $C$ in \eqref{eq:bound1} and \eqref{eq:bound2} -gives the approximation ratio in \eqref{approxbound}, and concludes the proof -of Theorem~\ref{thm:main}.\hspace*{\stretch{1}}\qed - - -\subsection{Proof of Theorem \ref{thm:lowerbound}} - -Suppose, for contradiction, that such a mechanism exists. Consider two -experiments with dimension $d=2$, such that $x_1 = e_1=[1 ,0]$, $x_2=e_2=[0,1]$ -and $c_1=c_2=B/2+\epsilon$. Then, one of the two experiments, say, $x_1$, must -be in the set selected by the mechanism, otherwise the ratio is unbounded, -a contradiction. If $x_1$ lowers its value to $B/2-\epsilon$, by monotonicity -it remains in the solution; by threshold payment, it is paid at least -$B/2+\epsilon$. So $x_2$ is not included in the solution by budget feasibility -and individual rationality: hence, the selected set attains a value $\log2$, -while the optimal value is $2\log 2$.\hspace*{\stretch{1}}\qed |
