summaryrefslogtreecommitdiffstats
path: root/slides/slides.tex
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2013-02-07 14:37:17 -0800
committerThibaut Horel <thibaut.horel@gmail.com>2013-02-07 14:37:17 -0800
commit58ccbe548085600cc2fbb005726191438b450bc7 (patch)
tree2f55375aff50a738072090cb1f4df7e830bbfe1d /slides/slides.tex
parenta148a6f046173cd114e009c6ef50e77d5d5941f4 (diff)
downloadrecommendation-58ccbe548085600cc2fbb005726191438b450bc7.tar.gz
Slides for dimacs workshop at Stanford
Diffstat (limited to 'slides/slides.tex')
-rw-r--r--slides/slides.tex493
1 files changed, 250 insertions, 243 deletions
diff --git a/slides/slides.tex b/slides/slides.tex
index 81f6deb..1bccd02 100644
--- a/slides/slides.tex
+++ b/slides/slides.tex
@@ -4,21 +4,21 @@
\usepackage[LGR,T1]{fontenc}
\usepackage{amsmath}
\usepackage{algpseudocode,algorithm}
+\usepackage{graphicx}
\DeclareMathOperator*{\argmax}{arg\,max}
\usetheme{Boadilla}
-\usecolortheme{beaver}
-\title[Budget Feasible Mechanisms for Experimental Design]{Budget Feasible Mechanisms for Experimental Design}
-\author{xx\\ Joint work with yy and zz}
+\title[]{Budget Feasible Mechanisms for Experimental Design}
+\author[Thibaut Horel]{Thibaut Horel\\ Joint work with Stratis Ioannidis and S. Muthukrishnan}
\institute[]{}
\setbeamercovered{transparent}
-
-\AtBeginSection[]
-{
-\begin{frame}<beamer>
-\frametitle{Outline}
-\tableofcontents[currentsection]
-\end{frame}
-}
+\setbeamertemplate{navigation symbols}{}
+%\AtBeginSection[]
+%{
+%\begin{frame}<beamer>
+%\frametitle{Outline}
+%\tableofcontents[currentsection]
+%\end{frame}
+%}
\begin{document}
@@ -26,229 +26,214 @@
\maketitle
\end{frame}
-\begin{frame}
-\tableofcontents
-\end{frame}
+\section{Introduction}
-\section{Experimental Design}
-\begin{frame}{Experimental Design}
- An experimenter is about to conduct an experiment with users.
- \begin{itemize}
- \item $n$ users
- \item $x_i\in\mathbb{R}^d$: public features of user $i$
- \item $c_i\in\mathbb{R}^+$: cost of user $i$ for taking part in the experiment
- \end{itemize}
+\begin{frame}{Motivation}
+ \begin{center}
+ \includegraphics<1-4>[scale=0.5]{1.pdf}
+ \includegraphics<5>[scale=0.5]{2.pdf}
+ \includegraphics<6>[scale=0.5]{3.pdf}
+ \includegraphics<7>[scale=0.5]{4.pdf}
+ \end{center}
- When paid $c_i$, user $i$ reveals $y_i$:
- \begin{displaymath}
- y_i = \beta^T x_i + \varepsilon_i,\quad\beta\in\mathbb{R}^d,\;
- \varepsilon_i\sim\mathcal{N}(0,\sigma^2)
- \end{displaymath}
- $\beta$ is \alert{unknown} to the experimenter.
-
- \begin{block}{}
- \alert{Question:} budget constraint $B$, which users to pick to learn $\beta$ as
- well as possible without spending more than $B$?
- \end{block}
+ \begin{center}
+ \begin{overprint}
+ \onslide<1>\begin{center}$N$ users\end{center}
+ \onslide<2>
+ \begin{center}
+ $x_i\in\mathbb{R}^d$: public features (e.g. age, sex, height, etc.)
+ \end{center}
+ \onslide<3>
+ \begin{center}
+ $y_i\in\mathbb{R}$: private date (e.g. disease, etc.)
+ \end{center}
+ \onslide<4>
+ \begin{center}
+ Linear model: $y_i = \beta^Tx_i + \varepsilon_i$
+ \end{center}
+ \begin{displaymath}
+ \beta^* = \arg\min_\beta \sum_i |y_i-\beta^Tx_i|^2
+ \end{displaymath}
+ \end{overprint}
+ \end{center}
\end{frame}
-\begin{frame}{Evaluation criterion}
- \begin{block}{}
- \alert{Question:} How to measure the helpfulness of a set of users $S$ in learning $\beta$?
- \end{block}
-
- \vspace{0.5cm}
- Bayesian approach:
+\begin{frame}{Challenges}
\begin{itemize}
- \item \emph{a priori} knowledge: prior distribution over $\beta$
- \item the entropy of $\beta$, $H(\beta)$ measures the uncertainty of the experimenter
- \item after observing $Y_S = \{y_i,\; i\in S\}$, uncertainty becomes $H(\beta\mid Y_S)$
+ \item Value of data?
+ \vspace{1cm}
+ \pause
+ \item How to optimize it?
+ \vspace{1cm}
+ \pause
+ \item Strategic users?
\end{itemize}
-
- \vspace{0.5cm}
-
- The value of $S$ is the \alert{entropy reduction}:
- \begin{displaymath}
- V(S) = H(\beta) - H(\beta\mid Y_S)
- \end{displaymath}
\end{frame}
-\begin{frame}{Value function}
- Gaussian linear model:
- \begin{displaymath}
- y_i = \beta^T x_i + \varepsilon_i,\quad\beta\in\mathbb{R}^d,\;
- \varepsilon_i\sim\mathcal{N}(0,\sigma^2)
- \end{displaymath}
-
- Typical prior distribution $\beta\sim\mathcal{N}(0,\tau I_d)$
-
- \vspace{0.5cm}
-
- \begin{block}{}
- Under the Gaussian linear model and Gaussian prior distribution:
- \begin{displaymath}
- V(S) = \log\det\Big(I_d + \lambda\sum_{i\in S}x_i x_i^T \Big)
- \end{displaymath}
- \end{block}
-
- \vspace{0.5cm}
-
- \alert{Remark:} $V$ can be computed efficiently using a Cholesky decomposition
+\begin{frame}{Contributions}
+ \begin{itemize}
+ \item case of the linear regression
+ \vspace{1cm}
+ \pause
+ \item deterministic mechanism
+ \vspace{1cm}
+ \pause
+ \item generalization (randomized mechanism)
+ \end{itemize}
\end{frame}
-\section{Non-strategic case}
-\begin{frame}{Optimization Problem}
- \begin{block}{P1}
- \begin{align*}
- &\text{maximize}\; V(S) = \log\det\Big(I_d + \lambda\sum_{i\in S}x_i x_i^T \Big)\\
- &\text{subject to}\; \sum_{i\in S}c_i\leq B\quad\text{(Knapsack constraint)}
- \end{align*}
- \end{block}
+\section{Budget feasible mechanism design}
- \onslide<2->
- Good news:
-
- $V$ is submodular (diminishing return):
- \begin{displaymath}
- \forall S\subseteq T\, \forall i,\; V(S\cup\{i\}) - V(S)\geq
- V(T\cup\{i\}) - V(T)
- \end{displaymath}
-
- \onslide<3->
- Bad news:
-
- Maximizing a submodular function under a knapsack constraint is NP-hard (even
- in the specific case of $\log\det$)
+\begin{frame}{Outline}
+\tableofcontents
\end{frame}
-\begin{frame}{Approximation}
- \begin{definition}[Approximation ratio]
- Let $OPT$ denote the optimal solution to P1, $S$ is an $\alpha$-approximation
- if:
- \begin{displaymath}
- V(OPT)\leq \alpha V(S)
- \end{displaymath}
- \end{definition}
-
- \vspace{0.5cm}
-
- \begin{theorem}[Sviridenko]
- \begin{enumerate}
- \item There is an algorithm which returns a set $S$ which is a $\frac{e}{e-1}$-approximation
- \item No algorithm can do better unless P=NP
- \end{enumerate}
- \end{theorem}
-
- \vspace{0.5cm}
-
- The algorithm is a combination of an enumeration method and a greedy heuristic.
+\begin{frame}{Outline}
+ \tableofcontents[currentsection]
\end{frame}
-\begin{frame}{Greedy algorithm}
- \begin{block}{Greedy($V$, $B$)}
- \begin{algorithmic}
- \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$
- \State $S \gets \emptyset$
- \While{$c_i\leq B - \sum_{j\in S} c_j$}
- \State $S \gets S\cup\{i\}$
- \State $i \gets \argmax_{1\leq j\leq n}
- \frac{V(S\cup\{j\})-V(S)}{c_j}$
- \EndWhile
- \State \textbf{return} $S$
- \end{algorithmic}
- \end{block}
+\begin{frame}{Reverse auction}
+\begin{itemize}
+ \item set of $N$ sellers $\mathcal{A} = \{1,\ldots,N\}$ and a buyer
+ \vspace{0.3cm}
+ \pause
+ \item $V$ value function of the buyer, $V:2^\mathcal{A}\rightarrow \mathbb{R}^+$
+ \vspace{0.3cm}
+ \pause
+ \item $c_i\in\mathbb{R}^+$ price of seller's $i$ good
+ \vspace{0.3cm}
+ \pause
+ \item $B$ budget constraint of the buyer
+\end{itemize}
- \vspace{0.5cm}
+\vspace{0.5cm}
+\pause
- \begin{lemma}
- Greedy has an \alert{unbounded} approximation ratio.
- \end{lemma}
+\begin{block}{Goal}
+ \begin{itemize}
+ \item Find $S\subset \mathcal{A}$ \alert{maximizing} $V(S)$
+ \vspace{0.3cm}
+ \item Find \alert{payment} $p_i$ to seller $i$
+ \end{itemize}
+\end{block}
\end{frame}
-\begin{frame}
- \begin{block}{MaxGreedy}
- \begin{algorithmic}
- \State $i^* \gets \argmax_{1\leq j\leq n} V(j)$
- \State $S \gets$ Greedy($V$, $B$)
- \If{$V(i^*)\geq V(S)$}
- \State \textbf{return} $\{i^*\}$
- \Else
- \State \textbf{return} $S$
- \EndIf
- \end{algorithmic}
- \end{block}
+\begin{frame}{Objectives}
+ Payments $(p_i)_{i\in S}$ must be:
+ \pause
+ \vspace{0.3cm}
+ \begin{itemize}
+ \item individually rational: $p_i\geq c_i,\;i\in S$
+ \vspace{0.2cm}
+ \pause
+ \item truthful: reporting one's true cost is a dominant strategy
+ \vspace{0.2cm}
+ \pause
+ \item budget feasible: $\sum_{i\in S} p_i \leq B$
+ \vspace{0.2cm}
+ \end{itemize}
- \vspace{0.5cm}
+ \pause
+ \vspace{0.3cm}
- \begin{lemma}
- MaxGreedy is a $\frac{5e}{e-1}$ approximation
- \end{lemma}
+ Mechanism must be:
+ \vspace{0.3cm}
+ \pause
+ \begin{itemize}
+ \item computationally efficient: polynomial time
+ \pause
+ \vspace{0.2cm}
+ \item good approximation: $V(OPT) \leq \alpha V(S)$ with:
+ \begin{displaymath}
+ OPT = \arg\max_{S\subset \mathcal{A}} \left\{V(S)\mid \sum_{i\in S}c_i\leq B\right\}
+ \end{displaymath}
+ \end{itemize}
\end{frame}
-\section{Strategic case}
-
-\begin{frame}{Reverse auction}
+\begin{frame}{Known results}
+ When $V$ is submodular:
+ \vspace{1cm}
+ \pause
+ \begin{itemize}
+ \item \alert{randomized} budget feasible mechanism,
+ approximation ratio: $7.91$ (Chen et al., 2011)
+ \vspace{1cm}
+ \pause
+ \item \alert{deterministic} mechanisms for:
+ \vspace{0.3cm}
+ \begin{itemize}
+ \item Knapsack: $2+\sqrt{2}$ (Chen et al., 2011)
+ \vspace{0.3cm}
+ \item Matching: 7.37 (Singer, 2010)
+ \vspace{0.3cm}
+ \item Coverage: 31 (Singer, 2012)
+ \vspace{0.3cm}
+ \end{itemize}
+ \end{itemize}
+\end{frame}
- \alert{Problem:} In real life, user are strategic agents. They lie about their costs.
- This is a \alert{reverse auction}: the experimenter wants to buy data
- from users.
+\section{Budget feasible mechanism for linear regression}
- \vspace{0.5cm}
+\begin{frame}{Outline}
+ \tableofcontents[currentsection]
+\end{frame}
- \alert{Goal:} Design an auction mechanism:
+\begin{frame}{Linear regression}
+ Each user $i\in\mathcal{A}$ has:
\begin{itemize}
- \item a selection rule $s: (c_1,\ldots,c_n) \mapsto (s_1,\ldots,s_n)$,
- $s_i\in\{0,1\}$
- \item a payment rule $p: (c_1,\ldots,c_n) \mapsto (p_1,\ldots,p_n)$,
- $p_i\in\mathbb{R}^+$
+ \item Public feature vector $x_i\in\mathbb{R}^d$
+ \item Private data $y_i\in\mathbb{R}$
\end{itemize}
+ \pause
\vspace{0.5cm}
- As usual in auction mechanism design, we want payments to be:
- \begin{itemize}
- \item individually rational: $p_i\geq c_i$
- \item truthful: reporting one's true cost is a dominant strategy
- \item normalized: $s_i=0$ implies $p_i=0$
- \end{itemize}
-\end{frame}
+ Gaussian linear model:
+ \begin{displaymath}
+ y_i = \beta^T x_i + \varepsilon_i,\quad\beta\in\mathbb{R}^d,\;
+ \varepsilon_i\sim\mathcal{N}(0,\sigma^2)
+ \end{displaymath}
-\begin{frame}{Optimization problem for budget feasible auctions}
- \begin{block}{P2}
- \begin{align*}
- &\text{maximize}\; V\big(s(c_1,\ldots,c_n)\big) = \log\det\Big(I_d + \lambda\sum_{i\in S}x_i x_i^T \Big)\\
- &\text{subject to}\; \sum_{i\in S}\alert{p_i}\leq B\quad\text{(budget feasible)}
- \end{align*}
- where the payments are further constrained to be individually rational, truthful
- and normalized
- \end{block}
+ \pause
+ \vspace{0.5cm}
- \vspace{1cm}
+ Which users to select?\pause{} Experimental design $\Rightarrow$ D-optimal criterion
- This is again NP-hard $\Rightarrow$ we seek good approximation ratios
+ \vspace{0.5cm}
+
+ \begin{block}{Experimental Design}
+ \begin{displaymath}
+ \textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right),\quad S\subset\mathcal{A}
+ \end{displaymath}
+ \end{block}
\end{frame}
-\begin{frame}{Myerson's theorem}
- \begin{theorem}[Myerson]
- Let $(s, p)$ be a mechanism. If:
- \begin{itemize}
- \item $s$ is \alert{monotonic}: if $c_i\leq c_i'$ then $s_i \geq s_i'$
- \item users are paid \alert{threshold payments}: $p_i = \inf\{c_i':i\notin s(c_i',c_{-i})\}$
- \end{itemize}
- Then, the mechanism is individually rational and truthful.
- \end{theorem}
+\begin{frame}{Experimental design}
+ \begin{displaymath}
+ \textsf{\alert{maximize}}\quad V(S) = \log\det\left(I_d + \sum_{i\in S} x_i x_i^T\right),\quad S\subset\mathcal{A}
+ \end{displaymath}
\vspace{1cm}
- \alert{Consequence:} It suffices to find a monotonic selection rule such that
- the threshold payments are within the budget constraint.
+ \begin{itemize}
+ \item the non-strategic optimization problem is NP-hard
+ \vspace{0.3cm}
+ \pause
+ \item $V$ is submodular
+ \vspace{0.3cm}
+ \pause
+ \item previous results give a randomized budget feasible mechanism
+ \vspace{0.3cm}
+ \pause
+ \item deterministic mechanism?
+ \end{itemize}
\end{frame}
\begin{frame}{Main result}
\begin{theorem}
- There is a budget feasible, individually rational and truthful mechanism for
- the experimental design problem which runs in polynomial time. Its
+ There exists a budget feasible, individually rational and truthful mechanism for
+ experimental design which runs in polynomial time. Its
approximation ratio is:
\begin{displaymath}
\frac{10e-3 + \sqrt{64e^2-24e + 9}}{2(e-1)}
@@ -257,80 +242,102 @@
\end{theorem}
\end{frame}
-
-\begin{frame}{Greedy revisited}
- \begin{block}{Greedy\only<2>{\alert{'}}($V$, $B$)}
- \begin{algorithmic}
- \State $i \gets \argmax_{1\leq j\leq n}\frac{V(j)}{c_j}$
- \State $S \gets \emptyset$
- \While{$c_i\leq \only<1>{B - \sum_{j\in S} c_j} \only<2->{\alert{\frac{B}{2}\frac{V(S\cup\{i\})-V(S)}{V(S\cup\{i\})}}}$}
- \State $S \gets S\cup\{i\}$
- \State $i \gets \argmax_{1\leq j\leq n}
- \frac{V(S\cup\{j\})-V(S)}{c_j}$
- \EndWhile
- \State \textbf{return} $S$
- \end{algorithmic}
+\begin{frame}{Sketch of proof}
+ \begin{block}{Mechanism (Chen et. al, 2011)}
+ \begin{itemize}
+ \item Find $i^* = \arg\max_i V(\{i\})$
+ \item Compute $S_G$ greedily
+ \item Return:
+ \begin{itemize}
+ \item $\{i^*\}$ if $V(\{i^*\}) \geq \only<1-2>{V(OPT_{-i^*})}\only<3>{\alert{V(OPT_{-i^*})}}\only<4->{\alert{L^*}}$
+ \item $S_G$ otherwise
+ \end{itemize}
+ \end{itemize}
\end{block}
- \vspace{1cm}
-
- \alert{Problem:} The threshold payments are not budget feasible.
-\end{frame}
+ \vspace{0.5cm}
+ \pause
-\begin{frame}{MaxGreedy revisited}
- \begin{block}{MaxGreedy}
- \begin{algorithmic}
- \State $i^* \gets \argmax_{1\leq j\leq n} V(j)$
- \State $S \gets$ Greedy\alert{'}($V$, $B$)
- \If{$V(i^*)\geq \only<1>{V(S)}\only<2,3>{\alert{OPT_{-i^*}}}\only<4>{\alert{OPT'_{i^*}}}$}
- \State \textbf{return} $\{i^*\}$
- \Else
- \State \textbf{return} $S$
- \EndIf
- \end{algorithmic}
- \end{block}
+ Valid mechanism, approximation ratio: 8.34
\vspace{0.5cm}
+ \pause
- \only<1>{\alert{Problem:} MaxGreedy is not monotonic}
+ \alert{Problem:} $OPT_{-i^*}$ is NP-hard to compute
- \only<2,3>{\alert{Solution 1:} use $OPT_{-i^*} = \max_{S, i^*\notin S}\{V(S) \mid \sum_{j\in S} c_j\}$. Gives a 8.34 approximation}
+ \vspace{0.5cm}
+ \pause
- \only<3>{\alert{Problem:} $OPT_{-i^*}$ cannot be computed in polynomial time}
+ \alert{Solution:} Replace $V(OPT_{-i^*})$ with $L^*$:
+ \pause
+ \begin{itemize}
+ \item computable in polynomial time
+ \pause
+ \item close to $V(OPT_{-i^*})$
+ \end{itemize}
+\end{frame}
- \only<4->{\alert{Solution 2:} use a concave relaxation:
+\begin{frame}{Sketch of proof (2)}
\begin{displaymath}
- OPT'_{i^*} = \max_{\lambda\in[0, 1]^n, \lambda_{i^*} = 0} L(\lambda)
- = \max_{\lambda\in[0, 1]^n, \lambda_{i^*} = 0}\log\det\big(I_d + \sum_{i=1}^n \lambda_i x_ix_i^T\big)
+ L^* = \arg\max_{\lambda\in [0,1]^n} \left\{\log\det\left(I_d + \sum_i \lambda_i x_i x_i^T\right)\mid \sum_{i=1}^n\lambda_i c_i\leq B\right\}
\end{displaymath}
- }
+ \vspace{1cm}
+ \begin{itemize}
+ \item polynomial time?\pause{} convex optimization problem
+ \pause
+ \vspace{0.5cm}
+ \item close to $V(OPT_{-i^*})$?\pause
+ \vspace{0.5cm}
+ \begin{block}{Technical lemma}
+ \begin{displaymath}
+ L^* \leq 2 V(OPT) + V(\{i^*\})
+ \end{displaymath}
+ \end{block}
+ \end{itemize}
\end{frame}
-\begin{frame}{Proof}
-\begin{itemize}
- \item Monotonicity: OK
- \pause
- \item Budget feasibility: OK
- \pause
- \item Approximation ratio: what do we lose by using a concave relaxation? Powerful
- method, \alert{pipage rounding} [Ageev, Sviridenko]
+\section{Generalization}
+
+\begin{frame}{Outline}
+ \tableofcontents[currentsection]
+\end{frame}
+
+\begin{frame}{Generalization}
\begin{itemize}
- \item let's introduce $F(\lambda) = \mathbb{E}\Big[\log\det(I_d+\sum_{i=1}^n \mu_ix_ix_i^T)\Big]$, $\mu_i\sim\mathcal{B}(\lambda_i)$
- \item $L(\lambda) \leq 2 F(\lambda)$ (technical lemma)
- \item $F$ is well-behaved: $\lambda$ can be round to a binary vector $\bar{\lambda}$ s.t $F(\lambda)\leq F(\bar{\lambda})$
- \item $OPT'_{-i^*}\leq 2 OPT_{-i^*} + V(i^*)$
- \item we can conclude by using the approximation ratio for $OPT_{-i^*}$
+ \item Generative model: $y_i = f(x_i) + \varepsilon_i,\;i\in\mathcal{A}$
+ \pause
+ \item prior knowledge of the experimenter: $f$ is a \alert{random variable}
+ \pause
+ \item \alert{uncertainty} of the experimenter: entropy $H(f)$
+ \pause
+ \item after observing $\{y_i,\; i\in S\}$, uncertainty: $H(f\mid S)$
\end{itemize}
-\end{itemize}
+
+ \pause
+ \vspace{0.5cm}
+
+ \begin{block}{Value function: entropy reduction}
+ \begin{displaymath}
+ V(S) = H(f) - H(f\mid Y_S),\quad S\subset\mathcal{A}
+ \end{displaymath}
+ \end{block}
+
+ \pause
+ \vspace{0.5cm}
+
+ $V$ is \alert{submodular} $\Rightarrow$ randomized budget feasible mechanism
\end{frame}
+
\begin{frame}{Conclusion}
\begin{itemize}
- \item Experimental design + Auction theory = powerful framework when working with user data
+ \item Experimental design + Auction theory = powerful framework
\vspace{1cm}
- \item Can we extend this to learning tasks beyond linear regression?
+ \pause
+ \item deterministic mechanism for the general case? other learning tasks?
\vspace{1cm}
- \item $\simeq \alert{13}$ approximation ratio. Lower bound: \alert{$2$}
+ \pause
+ \item approximation ratio $\simeq \alert{13}$. Lower bound: \alert{$2$}
\end{itemize}
\end{frame}
\end{document}